Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the experimental results of a new proof mass actuator for the implementation of velocity feedback control loops to reduce the flexural vibration of a thin plate structure. Classical proof mass actuators are formed by coil–magnet linear motors. These actuators can generate constant force at frequencies above the fundamental resonance frequency of the spring–magnet system, which can be used to efficiently implement point velocity feedback control loops. However, the dynamics of the spring–magnet system limit the stability and control performance of the loops when the actuators are exposed to shocks. The proof mass actuator investigated in this paper includes an additional flywheel element that improves the stability of the velocity feedback loop both by increasing the feedback gain margin and by reducing the fundamental resonance frequency of the actuator. This paper is focused on the stability and control performance of decentralized velocity feedback control loops.
Go to article

Authors and Affiliations

Aleksander Kras
1
ORCID: ORCID
Paolo Gardonio
2
ORCID: ORCID

  1. Silencions, Bierutowska 57-59, 51-315 Wrocław, Poland
  2. DPIA, Università di Udine, Via delle Scienze 206, 33100, Udine, Italy

This page uses 'cookies'. Learn more