Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of experimental studies on removal of NOx from flue gas via NO ozonation and wet scrubbing of products of NO oxidation in NaOH solutions. The experiment was conducted in a pilot plant installation supplied with flue gas from a coal-fired boiler at the flow rate 200 m3/h. The initial mole fraction of NOx,ref in flue gas was approx. 220 ppm, the molar ratio X = O3/NOref varied between 0 and 2.5. Ozone (O3 content 1÷5% in oxygen) was injected into the flue gas channel before the wet scrubber. The effect of the mole ratio X, the NaOH concentration in the absorbent, the liquid-to-gas ratio (L/G) and the initial NOx concentration on the efficiency of NOx removal was examined. Two domains of the molar ratio X were distinguished in which denitrification was governed by different mechanisms: for X ≤ 1.0 oxidation of NO to NO2 predominates with slow absorption of NO2, for X >> 1.0 NO2 undergoes further oxidation to higher oxides being efficiently absorbed in the scrubber. At the stoichiometric conditions (X = 1) the effectiveness of NO oxidation was better than 90%. However, the effectiveness of NOx removal reached only 25%. When ozonation was intensified (X ≥ 2.25) about 95% of NOx was removed from flue gas. The concentration of sodium hydroxide in the aqueous solution and the liquid-to-gas ratio in the absorber had little effect on the effectiveness of NOx removal for X > 2.

Go to article

Authors and Affiliations

Maciej P. Jakubiak
Włodzimierz K. Kordylewski
Download PDF Download RIS Download Bibtex

Abstract

Preliminary lab-scale investigations were conducted on slagging abatement in biomass-firing by fuel mixing. Three agriculture biomass fuels and olive cake were used in the experiments. Polish lignites and bituminous coals were examined as anti-sintering additives. The effects of chlorine release, potassium retention and ash sintering were examined by heating samples of biomass fuels and additives in the muffle oven and, next, firing them in the laboratory down-fired furnace at the temperature in the range of 800-1150ºC. The obtained slag samples were analysed on: chlorine and potassium content, sintering tendency and crystalline components. Among the examined coals lignite from Turów mine and bituminous coal from Bolesław Śmiały mine appeared to be the most effective in potassium retention in aluminosilicate and chlorine release from slag. Possibly the major factor of these coals which reduced ash sintering was relatively high content of kaolinite

Go to article

Authors and Affiliations

Włodzimierz K. Kordylewski
Krzysztof J. Mościcki
Karol J. Witkowski
Download PDF Download RIS Download Bibtex

Abstract

A process capable of NOx control by ozone injection gained wide attention as a possible alternative to proven post combustion technologies such as selective catalytic (and non-catalytic) reduction. The purpose of the work was to develop a numerical model of NO oxidation with O3 that would be capable of providing guidelines for process optimisation during different design stages. A Computational Fluid Dynamics code was used to simulate turbulent reacting flow. In order to reduce computation expense a 11-step global NO - O3 reaction mechanism was implemented into the code. Model performance was verified by the experiment in a tubular flow reactor for two injection nozzle configurations and for two O3/NO ratios of molar fluxe. The objective of this work was to estimate the applicability of a simplified homogeneous reaction mechanism in reactive turbulent flow simulation. Quantitative conformity was not completely satisfying for all examined cases, but the final effect of NO oxidation was predicted correctly at the reactor outlet.

Go to article

Authors and Affiliations

Norbert J. Modliński
Włodzimierz K. Kordylewski
Maciej P. Jakubiak

This page uses 'cookies'. Learn more