Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Pine wood nematode (Bursaphelenchus xylophilus) (Aphelenchida: Parasitaphelencidae) is one of the most harmful agents in coniferous forests. The most important vectors of pine wood nematode are considered to be some Monochamus species (Col.: Cerambycidae), which had been forest insects with secondary importance before the appearance of B. xylophilus. However, the continuous spreading of the nematode has changed this status and necessitated detailed biological and climatological investigation of the main European vector, Monochamus galloprovincialis. The potential distribution area of M. galloprovincialis involves those areas where the risk of the appearance of pine wood nematode B. xylophilus is significant. The main objective of our analysis was to obtain information about the influencing effects of North Atlantic Oscillation (NAO) on the potential European range of B. xylophilus and its vector species M. galloprovincialis based on the connection between the mean temperature of July in Europe, the distribution of day-degrees of the vector and the NAO index. Our assessment was based on fundamental biological constants of the nematode and the cerambycid pest as well as the ECMWF ERA5 Global Atmospheric Reanalysis dataset. Our hypothesis was built on the fact that the monthly mean temperature had to exceed 20°C in the interest of an efficient expansion of the nematode. In addition, the threshold temperature of the vector involved in the calculations was 12.17°C, while the accumulated day-degree (DD) had to exceed the annual and biennial 370.57°DD for univoltine and semivoltine development, respectively. Our finding that a connection could be found between a mean temperature in July above 20°C and NAO as well as between the accumulated day-degrees and NAO can be the basis for further investigations for a reliable method to forecast the expansion of pine wood nematode and its vector species in a given year.

Go to article

Authors and Affiliations

Katalin Somfalvi-Tóth
Sándor Keszthelyi
Download PDF Download RIS Download Bibtex

Abstract

Leguminous plant products have great nutritional and economic importance in the European Union, which is reflected by its protein policy. These harvested yields are risked by stored product pests, such as Acanthoscelides obtectus Say, which can cause up to 50–60% loss in stored bean items. The bean weevil causes both quantitative and qualitative damage to seeds. We aimed to map the qualitative damage of this devastating pest, which deteriorates the nutritional content of bean kernels. Furthermore, our purpose was to determine accurately the decrease in the volume and density alteration in beans caused by this important stored product pest using CT-assisted imaging analysis. Our results showed that the nutritional arrangement in damaged beans was caused by A. obtectus. The measured nutrient content increment in damaged samples can be explained by the presence of extraneous organic material which originates from perished specimens of the bruchin pest. This is a negative phenomenon in bean items used as forage, because of the loss of valuable proteins and rancidity in herbal oils. Weight loss triggered by developing larvae was 49.42% in examined bean items. The use of 3D technologies has greatly improved and facilitated the detailed investigation of injured seeds. The density (75,834 HU; 41.93%) and the volume (296.162 mm3; 26.21%) values measured by CT of the examined samples were significantly decreased. The decreasing of tissue density in damaged beans can be accounted for by the consumption of starch present at a high ratio and that of the dense reserve components in the cotyledons.
Go to article

Authors and Affiliations

Sandor Keszthelyi
Egri Helga Bosnyakne
David Horvath
Adam Csoka
Gyorgy Kovacs
Donko Tamas

This page uses 'cookies'. Learn more