Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Climate change causes various events, such as El Niño , and we experience their larger frequency. This study based on a quantitative approach uses observation data from the Umbu Mehang Kunda Meteorological Station and the Ocean Niño Index ( ONI). As a result, East Sumba, which has an arid climate, has more challenges in dealing with drought and water deficits during El Niño. This study identifies rainfall when the El Niño phenomenon takes place in East Sumba through data contributing to the ONI value and dry day series from 1982 to 2019. The analysis was carried out by reviewing these data descriptively and supported by previous literature studies. The research found that there was a decrease in the accumulative total rainfall in El Niño years. The annual rainfall in the last six El Niño events is lower than the annual rainfall in the first six El Niño events. The dry day series is dominated by an extreme drought (>60 days) which generally occurs from July to October. This drought clearly has a major impact on livelihoods and causes difficulties in agriculture as well as access to freshwater. This results in crop failure, food shortages, and decreased income. The phenomenon triggers price inflation in the market and potential increase in poverty, hunger, and pushes the country further away from the first and second Sustainable Development Goals. This phenomenon and problems related to it need to be dealt with by multistakeholders.
Go to article

Bibliography

ADRIANTO O, SUDIRMAN, SUWANDI 2019. Analisis daerah rawan kekeringan lahan jagung berdasarkan iklim Oldeman dan ketersedian air tanah di Nusa Tenggara timur saat periode El Nino dan La Nina [Analysis of areas prone to drought in corn fields based on Oldeman’s climate and availability of ground-water in East Nusa Tenggara during El Nino and La Nina periods]. Seminar Nasional Geomatika. Vol. 3, 1219 p. 1219– 1228. DOI 10.24895/SNG.2018.3-0.1047.
AL-ANSARI N. 2013. Management of water resources in Iraq: Perspectives and prognoses. Engineering. Vol. 5(6) p. 667–684. DOI 10.4236/eng.2013.58080.
BPS 2015. Statistik air bersih 2010–2014 [Freshwater statistic 2010– 2014]. Jakarta. Badan Pusat Statistik. ISSN 0853-6449 pp. 227.
BPS Provinsi Nusa Tenggara Timur 2019. Nusa Tenggara Timur dalam Angka 2019 [East Nusa Tenggara province in Figures 2019]. Sumba. Badan Pusat Statistik Provinsi Nusa Tenggara Timur. ISSN 0215-2223 pp. 595.
HAMIDI M. 2020. The key role of water resources management in the Middle East dust events. Catena. Vol. 187 p. 1–12. DOI 10.1016/j.catena.2019.104337.
HERCEG BULIC I., BRANKOVIC C., KUCHARSKI F. 2011. Winter ENSO teleconnections in a warmer climate. Climate Dynamics. Vol. 38 p. 1593–1613. DOI 10.1007/s00382-010-0987-8.
KAIN M.M., WAHID A., GERU A.S. 2018. Analisis Pengaruh El Niño Terhadap Hujan di Nusa Tenggara Timur [Analysis of the effect of El Nino on Rain in East Nusa Tenggara]. Jurnal Fisika. Vol. 3(2) p. 155–162.
KUMAR C.P. 2012. Climate change and its impact on groundwater resources. International Journal of Engineering and Science. Vol. 1(2) p. 43–60.
KUSWANTO H., HIBATULLAH F., SOEDJONO E.S. 2019. Perception of weather and seasonal drought forecasts and its impact on livelihood in East Nusa Tenggara, Indonesia. Heliyon. Vol. 5(8), e02360 DOI 10.1016/j.heliyon.2019.e02360.
KUSWANTO H., INAS R., FITHRIASARI K. 2018. Drought risk mapping in East Nusa Tenggara Indonesia based on return periods. Asian Journal of Scientific Research. Vol. 11(4), 489497 DOI 10.3923/ajsr.2018.489.497.
Ministerial declaration of The Hague on water security in the 21st Century [online]. [Access 10.05.2020]. Available at: https://www.worldwatercouncil.org/sites/default/files/World_Water_Forum_02/The_Hague_Declaration.pdf
MoE 2007. Indonesia country Report: Climate variability and climate change and their implication. Jakarta. Ministry of Environment pp. 67.
NAYLOR R., FALCON W., WADA W., ROCHBERG D. 2002. Using El Niño- Southern oscillation climate data to improve food policy planning in Indonesia. Bulletin of Indonesia Economic Studies. Vol. 38(1) p. 75–91. DOI 10.1080/000749102753620293.
NUARSA I W., ADNYANA I W.S., AS-SYAKUR A.R. 2015. Pemetaan Daerah Rawan Kekeringan di Bali-Nusa Tenggara dan Hubun-gannya dengan ENSO Menggunakan Aplikasi Penginderaan Jauh [Mapping of Drought Prone Areas in Bali-Nusa Tenggara and the Relationship with Enso Using Remote Sensing Data Applications]. Jurnal Bumi Lestari. Vol. 15(1) p. 20–30.
POLADE S.D., PIERC D.W., CYAN D.R., GERSHUNOV A., DELTTINGER M.D. 2014. The key role of dry days in changing regional climate and precipitation regimes. Scientific Reports. No. 4, 4364. DOI 10.1038/srep04364.
RIWU KAHO N.P. 2014. Panduan Interpretasi dan Respon Informasi Iklim dan Cuaca untuk Petani dan Nelayan [Guide to interpretation and response of climate and weather information for farmers and fisherman] [online]. Kupang, Indonesia. ICCTF- PIKUL pp. 45. [Access 10.04.2020]. Available at: https://media.neliti.com/media/publications/247-ID-panduan-interpretasi-dan-respon-informasi-iklim-dan-cuaca-untuk-petani-dan-nelay.pdf
SALMEYANTI R., HIDAYAT R., PRAMUDIA A. 2017. Rainfall prediction using Artificial Neural Network. Agromet. Vol. 31(1) p. 11–21. DOI 10.29244/j.agromet.31.1.11-21.
SCARSOGLIO S., LAIO F., RIDOLFI L. 2013. Climate dynamics: A network- based approach for the analysis of global precipitation. PLOS ONE. Vol. 8(8) p. 1–11. DOI 10.1371/journal.pone.0071129.
SHIKLOMANOV I.A. 2009. The hydrological cycle. Encyclopedia of life support system. St. Petersburg. EOLSS. ISBN 978-1-84826-024-5 pp. 348.
SIPAYUNG S.B., SUSANTI I., MARYADI E., NURLATIFAH A., SISWANTO B., NAFAYEST M., PUTRI F.A., HERMAWAN E. 2019. Analysis of drought potential in Sumba Island until 2040 caused by climate change. Journal of Physics: Conference Series. Vol. 1373, 012004. DOI 10.1088/1742-6596/1373/1/012004.
SURMAINI E., FAQIH A. 2016. Kejadian iklim ekstrim dan dampaknya terhadap pertanian tanaman pangan di Indonesia [Extreme climate events and their impacts on food crop in Indonesia]. Jurnal Sumberdaya Lahan. Vol. 10(2) p. 115–128.
TUKIDIN 2010. Karakter curah hujan di Indonesia [The character of Indonesian rainfall]. Jurnal Geografi FIS UNNES. Vol. 7(2) p. 136–145.
VENITSIANOV E., ADGIENKO G. 2018. Water is non-renewable resource [online]. Quard Research. Network and Australian Institute of Marine Science, Townsville, Australia: Quard Alliance SA. [Access 10.05.2020]. Available at: http://www.quard.org/water-crisis/quard-research/water-is-non-renewable-resource
WFP 2016. The impact of drought on households in four provinces in Eastern Indonesia [online]. Rome, Italy. World Food Programme pp. 88. [Access 10.05.2020]. Available at: https://documents.wfp.org/stellent/groups/public/documents/ena/wfp282160.pdf?_ga=2.57554346.1436474840.1643878647-829348870.1643878647
WWC 2000. From vision to action. [2nd World Water Forum]. [The Hague, March 2000].
Go to article

Authors and Affiliations

Mahawan Karuniasa
1
ORCID: ORCID
Priyaji Agung Pambudi
1

  1. University of Indonesia, School of Environmental Science, Salemba Raya Street No. 4, Central Jakarta, DKI Jakarta, 10430, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The global demand for water has been growing rapidly in the last decade with a global population growth rate of 1.1% p.a., which is equivalent to 81 million people per year. Southeast Asian countries are facing severe water scarcity challenge due to their location in the tropics. In 2018, the Sumba Island experienced the highest temperature of 36°C and lesser rain-fall of 911.1 mm3 per year and it was classified as a long dry island prone to drought due to dry winds from Australian des-serts. This paper focuses on the perceived effect of water scarcity on livelihoods in the Mandahu Village, Indonesia, due to climate change. Sampling and survey covered rural households and the findings showed that the average household of 4 to 8 people consumed around 250 dm3 of water per day. The community relied on two main sources of clean water from two main springs. However, the prolonged dry season from May until December every year results in major challenges to ac-cess water and eventually affect the agricultural productivity. Hence, the feasibility of the fog collection technology has been investigated from technological, economic and social points of view as a reliable and cost-effective source of water. The outcome of this work will produce a feasibility statement for fog-to-water as an alternative solution counteracting water scarcity in the Sumba Island, a solution which can be replicated in other climate change stricken hot spots in South-east Asia.
Go to article

Bibliography

ABDELKHALEQ R.A., ALHAJ AHMED I. 2007. Rainwater harvesting in ancient civilizations in Jordan. Water Science and Technology: Water Supply. Vol. 7(1) p. 85–93. DOI 10.2166/ws.2007.010.
ABDUL‐WAHAB S.A., LEA V. 2008. Reviewing fog water collection worldwide and in Oman. International Journal of Environmental Studies. Vol. 65(3) p. 487–500. DOI 10.1080/ 00207230802149983.
AHMED W., GARDNER T., TOZE S. 2011. Microbiological quality of roof-harvested rainwater and health risks: A review. Journal of Environmental Quality. Vol. 40(1) p. 13–21. DOI 10.2134/jeq2010.0345.
AL-FARUQ U., SAGALA S., RIANAWATI E., CURRIE E. 2016. Assessment of renewable energy impact to community resilience in Sumba Island [online]. Resilience Development Initiative. Working Paper Series. No. 9 pp. 14. [Access 12.04.2020]. Available at: https://www.preventionweb.net/go/51505
AMOATEY P., BANI R. 2011. Wastewater management. In: Waste water: Evaluation and management [online]. Ed. F.S.G. Einschlag p. 379–398. DOI 10.5772/16158. [Access: 17.03.2020]. Available at: https://www.intechopen.com/books/waste-water-evaluation-and-management/wastewater-management
ARIFFIN N., ABDULLAH M.M.A.B., ZAINOL M.R.R.M.A., MURSHED M.F., FARIS M.A., BAYUAJI R. 2017. Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web of Conferences. Vol. 97, 01023 pp. 8.
BAAWAIN M., CHOUDRI B.S., AHMED M., PURNAMA A. (eds.). 2015. Recent progress in desalination, environmental and marine outfall systems. Basel, Switzerland: Springer International Publishing.
BHUVANESWARI K., GEETHALAKSHMI V., LAKSHMANAN A., SRINIVASAN R., SEKHAR N.U. 2013. The impact of El Nino/ Southern oscillation on hydrology and rice productivity in the Cauvery Basin, India: Application of the soil and water assessment tool. Weather and Climate Extremes. Vol. 2 p. 39–47. DOI 10.1016/j.wace.2013.10.003.
BPS 2013. Sumba Timur Dalam Angka 2013. Katalog BPS 1102001.5302. Waingapu. Badan Pusat Statistik Kabupaten Sumba Timurp Rovinsi Nusa Tenggara Timur pp. 431.
BPS 2016. Provinsi Nusa Tenggara Timur Dalam Angka 2016 [Nusa Tenggara Timur Province in Figures 2016]. Badan Pusat Statistik Provinsi Nusa Tenggara Timur. ISSN 0215-2223 pp. 511.
BPS 2017. Jumlah UMK dan Jumlah Penduduk Menurut Pulau di Peovinsi NTT [Number of UMK and Total Population by Island in NTT Province] [online]. Badan Pusat Statistic Provinsi Nusa Tenggara Timur. [Access 10.05.2020]. Available at: https://ntt.bps.go.id/statictable/
CERECEDA P., SCHEMENAUER R.S., SUIT M. 1992. An alternative water supply for Chilean coastal desert villages. International Journal of Water Resources Development. Vol. 8(1) p. 53–59.
CHANDRAPPA R., GUPTA S., KULSHRESTHA U.C. 2011. Coping with climate change: principles and Asian context. Berlin–Heidelberg. Springer Verlag. ISBN 978-3-642-44745-7 pp. 370. DOI 10.1007/978-3-642-19674-4. CRAINE S. 2013. Final short fieldwork report for a village electrification options on Sumba Island. Hivos.
DAVTALAB R., SALAMAT A., OJI R. 2013. Water harvesting from fog and air humidity in the warm and coastal regions in the south of Iran. Irrigation and Drainage. Vol. 62(3) p. 281–288. DOI 10.1002/ird.1720.
DEVI R., DIBOCH B., SINGH V. 2012. Rainwater harvesting practices: A key concept of energy-water linkage for sustainable development. Scientific Research and Essays. Vol. 7(5) p. 538–543. DOI 10.5897/SRE09.487.
DHINGRA N., SINGH N.S., SHARMA R., PARWEEN T. 2020. Rainwater harvesting and current advancements. In: Modern age waste water problems. Solutions Using Applied Nanotechnology. Eds. M. Oves, M. Omaish Ansari, M. Zain Khan, M., Shahadat, I.M.I. Ismail. Springer Nature Switzerland p. 293–307.
DODSON L.L., BARGACH J. 2015. Harvesting fresh water from fog in rural Morocco: research and impact Dar Si Hmad’s Fogwater Project in Aït Baamrane’. Procedia Engineering. Vol. 107 p. 186–193. DOI 10.1016/j.proeng.2015.06.073.
DOMEN J.K., STRINGFELLOW W.T., CAMARILLO M.K., GULATI S. 2014. Fog water as an alternative and sustainable water resource. Clean Technologies and Environmental Policy. Vol. 16(2) p. 235–249. DOI 10.1007/s10098-013-0645-z.
FESSEHAYE M., ABDUL-WAHAB S.A., SAVAGE M.J., KOHLER T., GHEREZGHIHER T., HURNI H. 2017. Assessment of fog-water collection on the eastern escarpment of Eritrea. Water International. Vol. 42(8) p. 1022–1036. DOI 10.1080/02508060.2017.1393714.
FISHER R., BOBANUBA W.E., RAWAMBAKU A., HILL G.J., RUSSELL-SMITH J. 2006. Remote sensing of fire regimes in semi-arid Nusa Tenggara Timur, eastern Indonesia: Current patterns, future prospects. International Journal of Wildland Fire. Vol. 15(3) p. 307–317. DOI 10.1071/WF05083.
FREDERIKS B. 2013. Sumba energy from waste. Desk study report. Sumba Iconic Island Reports [online]. [Access 20.05.2020]. Hivos pp. 20 + App.. Available at: https://sumbaiconicisland.org/wp-content/
GANDHIDASAN P., ABUALHAMAYEL H.I., PATEL F. 2018. Simplified modeling and analysis of the fog water harvesting system in the Asir Region of the Kingdom of Saudi Arabia. Aerosol and Air Quality Research. Vol. 18(1) p. 200–213. DOI 10.4209/aaqr.2016.11.0481.
GOKKON B. 2015. Sumba renewable energy: A bright future where the lights don’t go out [online]. [Access 10.04.2020]. Available at: http://jakartaglobe.id/news/sumba-renewable-energybright-future-lights-dont-go/
HAMILTON K., REYNEKE B., WASO M., CLEMENTS T., NDLOVU T., KHAN W., …, AHMED W. 2019. A global review of the microbiological quality and potential health risks associated with roof-harvested rainwater tanks. npj Clean Water. Vol. 2(1), 7 p. 1–18. DOI 10.1038/s41545-019-0030-5.
HELMREICH B., HORN H. 2009. Opportunities in rainwater harvesting. Desalination. Vol. 248(1–3) p. 118–124. DOI 10.1016/j.desal.2008.05.046. Hivos 2012. Sumba: An iconic island to demonstrate the potential of renewable energy. Poverty reduction, economic development and energy access combined [online]. [Access 20.05.2020]. Available at: https://sumbaiconicisland.org/wp-content/
KHAWAJI A.D., KUTUBKHANAH I.K., WIE J. M. 2008. Advances in seawater desalination technologies. Desalination. Vol. 221(1–3) p. 47–69. DOI 10.1016/j.desal.2007.01.067.
LATTEMANN S., HÖPNER T. 2008. Environmental impact and impact assessment of seawater desalination. Desalination. Vol. 220(1–3) p. 1–15. DOI 10.1016/j.desal.2007.03.009.
MAYERHOFER M., LOSTER T. 2015. Fog nets. Available at: https://www.munichre-foundation.org/content/dam/munichre/
MBILINYI B.P., TUMBO S.D., MAHOO H.F., SENKONDO E.M., HATIBU N. 2005. Indigenous knowledge as decision support tool in rainwater harvesting. Physics and Chemistry of the Earth. P. A/B/C. Vol. 30(11–16) p. 792–798. DOI 10.1016/ j.pce.2005.08.022.
MCSWEENEY C., NEW M., LIZCANO G., LU X. 2010. The UNDP Climate Change Country Profiles Improving the Accessibility of Observed and Projected Climate Information for Studies of Climate Change in Developing Countries. Bulletin of the American Meteorological Society. Vol. 91 p. 157–166. DOI 10.1175/2009BAMS2826.1.
METER K.J.V., BASU N.B., TATE E., WYCKOFF J. 2014. Monsoon harvests: The living legacies of rainwater harvesting systems in South India. Environmental Science & Technology. Vol. 48(8) p. 4217–4225. DOI 10.1021/es4040182.
MILLER J. 2019. Aqualonis: Converting fog into drinking water. Obtaining drinking water from fog [online]. [Access 12.04.2020]. Available at: https://www.european-business.com/aqualonis-gmbh/aqualonis-converting-fog-into-drinking-water
MONK K.A., DE FRETES Y., REKSODIHARDJO-LILLEY G. 1997. The ecology of Nusa Tenggara and Maluku. Vol. V. The Ecology of Indonesia Series. Hong Kong: Periplus Editions pp. 966.
OKTAVIANI R., AMALIAH S., RINGLER C., ROSEGRANT M.W., SULSER T.B. 2011. The impact of global climate change on the Indonesian economy [online]. International Food Policy Research Institute Discussion paper, 01148. [Access 17.05.2020]. Available at: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/126762
OLIVIER J. 2008. Anyone for a glass of fresh fog? Alternative water sources for South Africa [online]. Research Report. Cape Town. UNISA p. 30–31. [Access 30.05.2020]. Available at: https://www.yumpu.com/en/document/view/27593719/unisa-2008-research-report-university-of-south-africa
PEREIRA D. 2008. Atacama [online]. flickr. [Access 20.05.2020]. Available at: https://www.flickr.com/photos/galeria_miradas/5816252302/in/photostream/
PIRNIA A., GOLSHAN M., DARABI H., ADAMOWSKI J., ROZBEH S. 2019. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. Journal of Water and Climate Change. Vol. 10(4) p. 725–742. DOI 10.2166/wcc.2018.162.
QADIR M., JIMÉNEZ G.C., FARNUM R.L., DODSON L.L., SMAKHTIN V. 2018. Fog water collection: Challenges beyond technology. Water. Vol. 10(4), 372 p. 1–10. DOI 10.3390/w10040372.
QDAIS H.A. 2008. Environmental impacts of the mega desalination project: the Red–Dead Sea conveyor. Desalination. Vol. 220(1–3) p. 16–23. DOI 10.1016/j.desal.2007.01.019.
RAHMAN A. 2017. Recent advances in modelling and implementation of rainwater harvesting systems towards sustainable development. Water. Vol. 9(12), 959. DOI 10.3390/ w9120959.
REARDON C., DOWNTON P., MCGEE C. 2013. Construction systems [online]. Your Home Australia’s guide to environmentally sustainable homes. [Access 17.05.2020]. Available at: https://www.yourhome.gov.au/materials/construction-systems
SASSEN K., WANG Z., LIU D. 2009. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. Journal of Geophysical Research: Atmospheres. Vol. 114. Iss. D4, ID D00H06. DOI 10.1029/2009JD011916.
SCHEMENAUER R.S., CERECEDA P. 1994. Fog collection's role in water planning for developing countries. Natural Resources Forum. Vol. 18. No. 2 p. 91–100. DOI 10.1111/j.1477-8947.1994.tb00879.x.
SCHEMENAUER R.S., OSSES P., LEIBBRAND M. 2004. Fog collection evaluation and operational projects in the Hajja Governorate, Yemen. In: Proceedings of the 3rd International Conference on Fog, Fog Collection and Dew. 11–15.10.2004. Cape Town, South Africa.
SHANYENGANA E.S., SANDERSON R.D., SEELY M.K., SCHEMENAUER R.S. 2003. Testing greenhouse shade nets in collection of fog for water supply. Journal of Water Supply: Research and Technology – AQUA. Vol. 52(3) p. 237–241.
SIDDIQUE M.N.I., MUNAIM M.S.A., ZULARISAM A.W. 2015. Feas¬ibility analysis of anaerobic co-digestion of activated manure and petrochemical wastewater in Kuantan (Malaysia). Journal of Cleaner Production. Vol. 106 p. 380–388. DOI 10.1016/j.jclepro.2014.08.003.
SII 2016. The iconic island for renewable energy. Sumba Iconic Island [online]. [Access 07.05.2020]. Available at: https://sumbaiconicisland.org/
SIPAYUNG S.B., SUSANTI I., MARYADI E., NURLATIFAH A., SISWANTO B., NAFAYEST M., PUTRI F.A., HERMAWAN E. 2019. Analysis of drought potential in Sumba Island until 2040 caused by climate change. Journal of Physics: Conference Series. Vol. 1373, 012004. DOI 10.1088/1742-6596/1373/1/012004.
SYAUKAT Y. 2011. The impact of climate change on food production and security and its adaptation programs in Indonesia. Journal of the International Society for Southeast Asian Agricultural Sciences. Vol. 17(1) p. 40–51. The Guardian 2016. Cloud fishing' reels in precious water for villagers in rural Morocco [online]. [Access 26.5.2020]. Available at: https://www.theguardian.com/global-development/2016/dec/26/cloud-fishing-reels-in-precious-water-villagers-rural-morocco-dar-si-hmad
TIEDEMANN K.J., LUMMERICH A. 2010. Fog harvesting on the verge of economic competitiveness [online]. 5th International Conference on Fog, Fog Collection and Dew. 25–30.07.2010. Münster, Germany. id.FOGDEW2010-93. [Access 07.05.2020]. Available at: http://meetings.copernicus.org/fog2010
TORTAJADA C. 2006. Water management in Singapore. Water Resources Development. Vol. 22(2) p. 227–240. DOI 10.1080/07900620600691944.
UNDP 2017. Sisi lain perubahan iklim: Mengapa Indonesia harus beradaptasi untuk melindungi rakyat iskinnya. United Nations Development Programme Indonesia. ISBN 978-979-17069-0-2 pp. 20.
USAID 2017. Climate risk profile: Indonesia [online]. Fact sheet pp. 5. [Access 30.05.2020]. Available at: https://www.climatelinks.org/sites/default/files/asset/document/2017_USAID_ATLAS_Climate%20Risk%20Profile_Indonesia.pdf
VINKE K., SCHELLNHUBER H.J., COUMOU D., GEIGER T., GLANEMANN N., HUBER V., KNAUS M., KROPP J., KRIEWALD S., LAPLANTE B., LEHMANN J. 2017. A region at risk: The human dimensions of climate change in Asia and the Pacific [online]. Mandaluyong City, Metro Manila: Asian Development Bank. [Access 30.04.2020]. Available at: https://www.adb.org/sites/default/files/publication/325251/region-risk-climate-change.pdf
WINQVIST G., DAHLBERG E., SMITH B., BERLEKOM M. 2008. Indonesia environmental and climate change policy brief. Gothenburg. Sida Helpdesk for Environmental Economics, University of Gothenburg pp. 24. WV 2016. World vision’s response to El Niño in Asia-Pacific. Snapshot of interventions in priority countries and funding available per response [online]. World Vision Asia Pacific, OCHA, US National Oceanic & Atmospheric Administration, World Meteorological Organization [Access 30.04.2020]. Available at: http://www.wvi.org/sites/default/files/ElNino_AsiaPacific_April2016.pdf
YOUNOS T. 2005. Environmental issues of desalination. Journal of Contemporary Water Research and Education. Vol. 132(1) p. 11–18. DOI 10.1111/j.1936-704X.2005.mp132001003.x.
ZHANG S.X., BABOVIC V. 2012. A real options approach to the design and architecture of water supply systems using innov-ative water technologies under uncertainty. Journal of Hydroinformatics. Vol. 14(1) p. 13–29. DOI 10.2166/hydro.2011.078.

Go to article

Authors and Affiliations

Zaitizila Ismail
1
ORCID: ORCID
Yun Ii Go
1
ORCID: ORCID
Mahawan Karuniasa
2
ORCID: ORCID

  1. Heriot-Watt University Malaysia, School of Engineering and Physical Science, 62200 Putrajaya, Wilayah Persekutuan Putrajaya, Malaysia
  2. Universitas Indonesia, School of Environmental Science, Jakarta, Indonesia

This page uses 'cookies'. Learn more