Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This investigation is concerned with the extraction of nugget copper particles from copper recovery plant slag which recycled of copper scrap. For this purpose, the Falcon concentrator was used because of its enhanced gravity properties. The Falcon concentrator has a fast spinning bowl which creates a centrifugal force to separate fine size minerals on the basis of their density differences. In the tests, the tailings of the copper recovery plant were used and the test sample was divided into two groups and one of them was classified in narrow particle sizes. The operational parameters were determined as particle size, centrifugal force and washing water pressures. The water pressure and centrifugal force have an inversely proportional relationship. Because of this phenomenon, the G/P parameter was created. The test conditions were applied to the whole distribution sample and narrow size distribution samples in the same way.

The test results indicate that the average grade was elevated from 1.04% to 6.50% with the recovery of 15.07% and 619% enrichment ratio for narrow sizes, whereas grade was elevated to 4.36% with 13.24% recovery and 415.94% enrichment ratio for the whole distribution. As a result, the recovery and grade values of concentrates are not good enough for gravity concentration process for both samples. However, this process was applied to the double recycled material and the lower recovery, grade values can be tolerated because of concentrate is nugget copper metal. The concentrate can also be washed in cleaning table for increasing the grade value for adding to initial feed of plant. This process can, therefore, supply important earnings not only economically but also environmentally.

Go to article

Authors and Affiliations

Murat Kademli
Namik Atakan Aydogan
Download PDF Download RIS Download Bibtex

Abstract

The present study modelled the effects of operational parameters on the performance of the Falcon concentrator. For this purpose, the Falcon L40 concentrator was tested in narrow particle-size fractions (−600 + 425 μm, −425 + 300 μm, −300 + 212 μm, −212 + 150 μm, −150 + 106 μm, and −106 + 75 μm) at different washing water pressures and artificial gravity forces generated by a spinning bowl. The test samples were prepared artificially, comprising 2% magnetite (Fe3O4) and 98% calcite (CaCO3) by weight. The recovery and grade values of the 60 experimental conditions were investigated and compared for different operational parameters, including particle-size distributions, water pressures, and artificial gravity forces. Two empirical models were developed using non-linear regression analysis to indicate the effects of the operating parameter of the Falcon concentrator on its recovery and grade values. The operational parameters were found to impact the separation performance considerably. Therefore, the Falcon concentrator should operate under optimum conditions, which can be easily predicted using these models, to achieve improved recovery and grade values.
Go to article

Authors and Affiliations

Namik Atakan Aydogan
1
ORCID: ORCID
Murat Kademli
1
ORCID: ORCID

  1. Hacettepe University, Mining Engineering Department, Turkey

This page uses 'cookies'. Learn more