Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Analysis of a crystallographic texture (a preferred orientation) effect on cavitation wear resistance of the as-cast CuZn10 alloy, has been conducted in the present paper. The experiment was conducted on the CuZn10 alloy samples with <101>//ND or <111>//ND preferred orientations (where the ND denotes direction that is perpendicular to the exposed surface). The cavitation resistance examinations have been carried out on three different laboratory stands (namely, vibration, jet-impact and flow stands) that are characterized by a various intensity and a way of cavitation’s excitement. Obtained results point towards a higher cavitation resistance of the CuZn10 alloy with the <111> // ND preferred orientation.
Go to article

Authors and Affiliations

W. Polkowski
R. Jasionowski
D. Zasada
Download PDF Download RIS Download Bibtex

Abstract

The main reason of a cavitational destruction is the mechanical action of cavitation pulses onto the material’s surface. The course

of cavitation destruction process is very complex and depends on the physicochemical and structural features of a material. A resistance

to cavitation destruction of the material increases with the increase of its mechanical strength, fatigue resistance as well as hardness.

Nevertheless, the effect of structural features on the material’s cavitational resistance has been not fully clarified. In the present paper,

the cavitation destruction of ZnAl4 as cast alloy was investigated on three laboratory stands: vibration, jet-impact and flow stands.

The destruction mechanism of ZnAl4 as cast alloy subjected to cavitational erosion using various laboratory stands is shown in the present

paper.

Go to article

Authors and Affiliations

R. Jasionowski
D. Zasada
W. Polkowski
Download PDF Download RIS Download Bibtex

Abstract

In this work, the effect of the microstructure on corrosion behavior of selected Mg- and Al-based as cast alloys, was evaluated. The electrochemical examinations were carried out, and then a morphology of corrosion products formed due to local polarization on materials surface, was analyzed. It was documented that the presence of Mg2Si phase plays an important role in the corrosion course of Mg-based alloy. A selective etching was observed in sites of Mg2Si precipitates having “Chinese script”- like morphology. Analogous situation was found for Al-based alloy, where the key role was played by cathodic θ-CuAl2 phase.
Go to article

Authors and Affiliations

M.M. Lachowicz
R. Jasionowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results from a study on the impact of the cooling rate in the eutectoid transition on the abrasive wear of the as cast Zn-4Al alloy. The microstructure of the researched material consists of dendrites of the η solid solution and an (α+η) eutectic structure. During the eutectoid transformation at 275oC the distribution in the eutectic structure was transformed and fined. Heat treatment was carried out for this alloy, during which three cooling mediums were used, i.e. water, air and an furnace. For the research material obtained in this way, metallographic examinations were performed using the methods of light and scanning electron microscopy, as well as hardness measurements. It was found that faster cooling rate promoted the fragmentation of structural components, which translates into higher hardness of the material. This also had effects in the tribological wear of the tested alloy. As part of the tests, an abrasive wear test was carried out on a standard T-07 tester.

Go to article

Authors and Affiliations

M.M. Lachowicz
T. Leśniewski
M.B. Lachowicz
R. Jasionowski

This page uses 'cookies'. Learn more