Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:

Authors and Affiliations

Jan Dzierżek
1
Robert Janiszewski
1

  1. University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

An optical measurement method of radial displacement of a ring sample during its expansion with velocity of the order 172 m/s and estimation technique of plastic flow stress of a ring material on basis of the obtained experimental data are presented in the work. To measure the ring motion during the expansion process, the Phantom v12 digital high-speed camera was applied, whereas the specialized TEMA Automotive software was used to analyze the obtained movies. Application of the above-mentioned tools and the developed measuring procedure of the ring motion recording allowed to obtain reliable experimental data and calculation results of plastic flow stress of a copper ring with satisfactory accuracy.

Go to article

Authors and Affiliations

Jacek Janiszewski
Download PDF Download RIS Download Bibtex

Abstract

A method of tensile testing of materials in dynamic conditions based on a slightly modified compressive split Hopkinson bar system using a shoulder is described in this paper. The main goal was to solve, with the use of numerical modelling, the problem of wave disturbance resulting from application of a shoulder, as well as the problem of selecting a specimen geometry that enables to study the phenomenon of high strain-rate failure in tension. It is shown that, in order to prevent any interference of disturbance with the required strain signals at a given recording moment, the positions of the strain gages on the bars have to be correctly chosen for a given experimental setup. Besides, it is demonstrated that - on the basis of simplified numerical analysis - an appropriate gage length and diameter of a material specimen for failure testing in tension can be estimated.

Go to article

Authors and Affiliations

Robert Panowicz
Jacek Janiszewski
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of investigation of ultra-strength nanostructured bainitic steel Fe-0.6%C-1.9%Mn-1.8%Si-1.3%Cr-0.7%Mo (in wt. %) subjected to shear and uniaxial compression under high strain rate loading. Steel of microstructure consisted of carbide-free bainite and carbon enriched retained austenite presents a perfect balance of mechanical properties especially strength to toughness ratio. Two retained austenite morphologies exist which controlled ductility of the steel: film between bainite laths and separated blocks. It is well established that the strain induced transformation of carbon enriched retained austenite to martensite takes place during deformation. Shear localisation has been found to be an important and often dominant deformation and fracture mode in high-strength steels at high strain rate. Deformation tests were carried out using Gleeble simulator and Split Hopkinson Pressure Bar. Shear and compression strength were determined and toughness and crack resistance were assessed. Susceptibility of nanostructured bainitic steel to the formation of adiabatic shear bands (ASBs) and conditions of the bands formation were analysed. The results suggest that the main mechanism of hardening and failure at the dynamic shearing is local retained austenite transformation to high-carbon martensite which preceded ASBs formation. In the area of strain localization retained austenite transformed to fresh martensite and then steel capability to deformation and strengthening decreases.

Go to article

Authors and Affiliations

J. Marcisz
J. Janiszewski
Download PDF Download RIS Download Bibtex

Abstract

The study aimed to determine the content of selenium (Se), zinc (Zn), copper (Cu) and cadmium (Cd) in the liver of predominantly plant-eating omnivore wild boar (Sus scrofa), predominantly meat-eating omnivore red fox (Vulpes vulpes) and herbivore red deer (Cervus elaphus), from North-Eastern Poland (Warmia and Mazury), in order to verify the distribution of these elements in the trophic pyramid. Furthermore, the study was used to assess the risk of eating venison. Samples were analyzed using atomic absorption spectrophotometry. The average concentration of Se was 3.9 (p<0.001) and 1.8-fold higher (p<0.001) in the wild boar and red fox, respectively, in comparison to the red deer, and 2.1-fold higher in the wild boar comparing to the red fox (p<0.001). There was no difference in the average concentration of Zn. The average concentration of Cu was 9.3. Concentration of this element was 5.4-fold higher in red deer in comparison to red fox (p<0.001) and 9,34-fold higher than in wild boar (p<0.001).
The average concentration of Cd was 1.9-fold higher in wild boar in comparison to the red fox (p<0.029). Correlation between Cu and Cd concentrations was also observed in the case of the red deer and red fox, while no such correlations were observed between the tested elements in the wild boar. In conclusion, the liver concentrations of these heavy metals in selected wild animas species from the hunting areas of Warmia and Mazury, do not exceed standard safe values for consumers. Moreover, the wild red deer population in North-Eastern Poland is significantly Se deficient.
Go to article

Bibliography


Abdelghany AE, Elkhaiat HM (2015) The importance of copper and the effects of its deficiency and toxicity in animal health. Int J Livest Res 5: 1-20.
Amici A, Danieli PP, Russo C, Primi R, Ronchi B (2012) Concentrations of some toxic and trace elements in wild boar (Sus scrofa) organs and tissues in different areas of the Province of Viterbo, Central Italy. Ital J Anim Sci 11: 65.
Balicka-Ramisz A, Pilarczyk B, Ramisz A, Pilarczyk R, Nader K (2010) Selenium concentrations in the liver, kidneys, and muscles in Silver foxes (Vulpes vulpes). Bull Vet Inst Pulawy 54: 265-267.
Bednarek D, Bik D (1994) Influence of selenium on animals’ health. Part II. Result of deficiency (In Polish). Życie Wet 7: 269-272.
Brightling P (1983) Enzootic ataxia in lambs and kids in Saskatchewan. Can Vet J 24: 164-165.
Chen J, Berry MJ (2003) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86: 1-12.
CSO (Central Statistical Office) 2017: Forestry 2017. Central Statistical Office Press: Warsaw, Poland, 2015: 163. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/lesnictwo/lesnictwo-2015,1,11.html.
Cygan-Szczegielniak D, Stanek M, Stasiak K, Roslewska A, Janicki B (2018) The Content of Mineral Elements and Heavy Metals in the Hair of Red Deer (Cervus elaphus L.) from Selected Regions of Poland. Folia Biol (Kraków) 66: 133-142.
Falandysz J, Szymczyk-Kobrzyńska K, Brzostowski A, Zalewski K, Zasadowski A (2005) Concentrations of heavy metals in the tissues of Red Deer (Cervus elaphus) from the region of Warmia and Mazury, Poland. Food Addit Contam 22: 141-149.
Falandysz J, Zhang J, Wang YZ, Saba M, Krasińska G, Wiejak A, Li T (2015) Evaluation of mercury contamination in fungi boletus species from latosols, lateritic red earths, and red and yellow earths in the circum-Pacific mercuriferous belt of southwestern China. PLoS One 10: 0143608.
Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189: 147-63.
Georgiev D, Raichev E, Dospatliev L, Ivanova M, Peeva S, Kalcheva S, Georgieva K (2018) Heavy metals concentrations in organs of red foxes (Vulpes Vulpes Linnaeus, 1758) and golden jackals (Canis Aureus Linnaeus, 1758) inhabiting the “Sarnena Sredna Gora” mountain in Bulgaria. Bulg J Agric Sci 24: 119-124.
Haider S, Anis L, Batool Z, Sajid I, Naqvi F, Khaliq S, Ahme S (2015) Short term cadmium administration dose dependently elicits immediate biochemical, neurochemical and neurobehavioral dysfunction in male rats. Metab Brain Dis 30: 83.
Handeland K, Flåøyen A (2000) Enzootic ataxia in a Norwegian red deer herd. Acta Vet Scand 41: 329-331.
Heltai M, Markov G (2012) Red fox (Vulpes vulpes Linnaeus, 1758) as biological indicator for environmental pollution in Hungary. Bull Environ Contam Toxicol 89: 910-914.
Hosking WJ, Caple IW, Halpin CG, Brown AJP, Paynter DI, Conley DN, North-Coombes PL (1986) Copper. In: Trace elements for pas-tures and animals in victoria. Victorian Goverment Printing Office, Melbourne, p 9-13.
Ikeda M, Zhang ZW, Moon CS, Imai Y, Watanabe T, Shimbo S, Ma WC, Lee CC, Guo YL (1996) Background exposure of general popula-tion to cadmium and lead in Tainan City, Taiwan. Arch Environ Contam Toxicol 30: 121-126.
Kincaid RL (1999) Assessment of trace mineral status of ruminants, A review. J Anim Sci 77: 1-10.
Koenig KM, Rode LM, Cohen RD, Buckley WT (1997) Effects of diet and chemical form of selenium on sele- nium metabolism in sheep. J Anim Sci 75: 817-827.
Kuiters AT (1996) Accumulation of cadmium and lead in red deer and wild boar at the Veluwe, The Netherlands. Vet Q 18 Suppl 3: 134-135.
Medvedev N, Panichev N, Hyvarinen H (1997) Levels of heavy metals in seals of Lake Ladoga and the White Sea. Sci Total Environ 206: 95-105.
Meschy F (2010) Sulfur and trace elements. Selenium. In: Mineral nutrition of ruminants (in French). Editions Quae,Versaille, France, p 208.
Miao X, Sun W, Fu Y, Miao L, Cai L (2013) Zinc homeostasis in the metabolic syndrome and diabetes. Front Med 7: 31-52.
Millan J, Mateo R, Taggart MA, Lopez-Bao JV, Viota M, Monsalve L, Camarero PR, Blazquez E, Jimenez B (2008) Levels of heavy metals and metalloids in critically endangered Iberian lynx and other wild carnivores from Southern Spain. Sci Total Environ 399: 193-201.
Paniagua-Castro N, Escalona-Cardoso G, Chamorro-Cevallos G (2007) Glycine reduces cadmium-induced teratogenic damage in mice. Re-prod Toxicol 23: 92-97.
Pérez-López M, Soler F, Hernandez-Moreno D, Rigueira L, Fidalgo LE, López-Beceiro A (2015) Bioaccumulation of cadmium, lead and zinc in liver and kidney of red fox (Vulpes vulpes) from NW Spain: influence of gender and age. Toxicol Environ Chem 98: 1-9.
Pilarczyk B, Balicka-Ramisz A, Ramisz A, Adamowicz E, Bujak T, Tomza-Marciniak A , Bąkowska M, Da̧browska- -Wieczorek M (2008) Selenium concentration in roe deer from the Western Pomerania, Poland. Bull Vet Inst Pulawy 52: 631-633.
Pilarczyk B, Hendzel D, Pilarczyk R, Tomza-Marciniak A, Błaszczyk B, Dąbrowska-Wieczorek M, Bąkowska M, Adamowicz E, Bujak T (2010) Liver and kidney concentrations of selenium in wild boars (Sus scrofa) from northwestern Poland. Eur J Wildl Res 56: 797-802.
Piskorová L, Vasilková Z , Krupicer I (2003) Heavy metal residues in tissues of wild boar (Sus scrofa) and red fox (Vulpes vulpes) in the Central Zemplin region of the Slovak Republic. Czech J Anim Sci 48: 134-138.
Pollock B (2005) Trace elements status of white-tailed red deer (Odocoileus virginianus) and moose (Alces alces) in Nova Scotia. Canadian Cooperative Wildlife Health Centre – Newsletters & Publications, Lincoln, p 17.
Prasad AS (2013) Discovery of human zinc deficiency: Its impact on human health and disease. Adv Nutr 176-190.
Puls R (1994) Mineral levels in animal health: diagnostic data. 2nd ed., Sherpa International, Clearbrook, p 356.
Radwinska J, Zarczynska K (2014) Effects of mineral deficiency on the health of young ruminants. J Elem 19: 915-928.
Rous P, Jelínek P (2000) The effect of soil contamination on heavy metals content in some rabbit tissues. Czech J Anim Sci 45: 319-324.
Santiago D, Motas-Guzmán M, Reja A, María-Mojica P, Rodero B, García-Fernández AJ (1998) Lead and cadmium in red deer and wild boar from Sierra Morena Mountains (Andalusia, Spain). Bull Environ Contam Toxicol 61: 730-737.
Srebocan E, Pompe-Gotal J, Konjevic D, Crnic A, Popović N, Kolić E (2006) Cadmium in fallow deer tissue. Vet Arhiv 76: S143-S150.
Suran J, Prišć M, Rašić D, Srebocan E, Crnic A (2013) Malondialdehyde and heavy metal concentrations in tissues of wild boar (Sus scrofa L.) from central Croatia. J Environ Sci Health B 48: 147-152.
Toman R, Massányi P, Uhrín V (2002) Changes in the testis and epididymis of rabbits after an intraperitoneal and peroral administration of cadmium. Trace Elem Med 19: 114-117.
Underwood EJ, Suttle NF (1999) The Mineral Nutrition of Livestock. 3rd ed., CABI Publishing, Wallingford, Oxon, p 283-292.
Vikøren T, Bernhoft A, Waaler T, Handeland K (2005) Liver concentrations of copper, cobalt, and selenium in wild Norwegian red deer (Cervus elaphus). J Wildl Dis 41: 569-579.
Whanger P, Vendeland S, Park Y, Xia Y (1996) Metabolism of subtoxic levels of selenium in animals and humans. Ann Clin Lab Sci 26: 99-113.
Whitelaw A (1985) Copper deficiency in cattle and sheep. In Pract 7: 98-100.
Wieczorek J, Gambuś F (2005) Heavy metal distribution in organisms of hares, roe deer and foxes. Ecol Chem Eng S 12: 127-133.
Wilson PR, Grace ND (2001) A review of tissue reference values to assess the trace elements status of farmed red deer (Cervus elaphus). N Z Vet J 49: 126-132.
Wysocka D, Snarska A, Sobiech P (2019) Copper – an essential micronutrient for calves and adult cattle. J Elem 24: 101-110.
Go to article

Authors and Affiliations

K. Cebulska
1
P. Sobiech
1
D. Tobolski
1
D. Wysocka
1
P. Janiszewski
2
D. Zalewski
2
A. Gugołek
2
J. Illek
3

  1. Department of Internal Disease, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 14, 10-957 Olsztyn, Poland
  2. Department of Fur-bearing Animal Breeding and Game Management, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
  3. Clinic of Ruminant and Swine Diseases, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic

Authors and Affiliations

Leszek Marks
Marcin Szymanek
Jan Dzierżek
Robert Janiszewski
Jarosław Kaczorowski
Leszek Lindner
Aleksandra Majecka
Michał Makos
Anna Tołoczko-Pasek
Barbara Woronko

This page uses 'cookies'. Learn more