Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Why do we study the polar regions of the Earth? For the same reason a mountaineer climbs mountains: “Because they are there!” And in addition, they are of great importance to the entire planet and to our country.
Go to article

Authors and Affiliations

Jacek A. Jania
Download PDF Download RIS Download Bibtex

Abstract

Arctic glaciers respond quickly to climatic conditions, which is why they play a special role as climate warming indicators. Studying them in the long term is the key to understanding future global environmental changes.

Go to article

Authors and Affiliations

Jacek Jania
Download PDF Download RIS Download Bibtex

Abstract

Dlaczego badamy polarne regiony Ziemi? Odpowiedź jest taka sama jak na typowe pytanie, dlaczego alpinista chodzi w góry: „Bo one są!”. A na dodatek okolice biegunów są bardzo ważne dla całej planety. Także dla naszego kraju.

Go to article

Authors and Affiliations

Jacek A. Jania
Keywords zmiany klimatu
Download PDF Download RIS Download Bibtex

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics.

Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points.

Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.

Go to article

Authors and Affiliations

Jacek Jania
Download PDF Download RIS Download Bibtex

Abstract

Dlaczego badamy polarne regiony Ziemi? Odpowiedź jest taka sama jak na typowe pytanie, dlaczego alpinista chodzi w góry: „Bo one są!”. A na dodatek okolice biegunów są bardzo ważne dla całej planety. Także dla naszego kraju.

Go to article

Authors and Affiliations

Jacek A. Jania
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study is to describe the current state of tidewater glaciers in Svalbard as an extension of the inventory of Hagen et al. (1993). The ice masses of Svalbard cover an area of ca 36 600 km2 and more than 60% of the glaciated areas are glaciers which terminate in the sea at calving ice-cliffs. Recent data on the geometry of glacier tongues, their flow velocities and front position changes have been extracted from ASTER images acquired from 2000-2006 using automated methods of satellite image analysis. Analyses have shown that 163 Svalbard glaciers are of tidewater type (having contact with the ocean) and the total length of their calving ice-cliffs is 860 km . When compared with the previous inventory, 14 glaciers retreated from the ocean to the land over a 30-40 year period. Eleven formerly land-based glaciers now terminate in the sea. A new method of assessing the dynamic state of glaciers, based on patterns of frontal crevassing, has been developed. Tidewater glacier termini are divided into four groups on the basis of differences in crevasse patterns and flow velocity: (1) very slow or stagnant glaciers, (2) slow-flowing glaciers, (3) fast-flowing glaciers, (4) surging glaciers (in the active phase) and fast ice streams. This classification has enabled us to estimate total calving flux from Svalbard glaciers with an accuracy appreciably higher than that of previous attempts. Mass loss due to calving from the whole archipelago (excluding Kvitřya) is estimated to be 5.0-8.4 km3 yr-1 (water equivalent - w.e.), with a mean value 6.75 ± 1.7 km3 yr-1 (w.e.). Thus, ablation due to calving contributes as much as 17-25% (with a mean value 21%) to the overall mass loss from Svalbard glaciers. By implication, the contribution of Svalbard iceberg flux to sea-level rise amounts to ca 0.02 mm yr-1. Also calving flux in the Arctic has been considered and the highest annual specific mass balance attributable to iceberg calving has been found for Svalbard.

Go to article

Authors and Affiliations

Małgorzata Błaszczyk
Jacek A. Jania
Jon Ove Hagen
Download PDF Download RIS Download Bibtex

Abstract

Significant retreat of glaciers terminating in Hornsund Fjord (Southern Spits− bergen, Svalbard) has been observed during the 20th century and in the first decade of the 21st century. The objective of this paper is to present, as complete as possible, a record of front positions changes of 14 tidewater glaciers during this period and to distinguish the main factors influencing their fluctuations. Results are based on a GIS analysis of archival maps, field measurements, and aerial and satellite images. Accuracy was based on an assessment of seasonal fluctuations of a glacier’s ice cliff position with respect to its mini− mum length in winter (November–December) and its maximum advance position in June or July. Morphometric features and the environmental setting of each glacier are also presented. The total area of the glacier cover in Hornsund Fjord in the period of 1899–2010 diminished approximately 172 km 2 , with an average areal retreat rate of 1.6 km 2 a −1 .The recession rate increased from ~1 km 2 a −1 in first decades of the 20th century up to ~3 km 2 a −1 in years 2001–2010. The latest period was more thoroughly studied using optical satellite images acquired almost every year. The importance of glacier morphology and hypsometry, as well as fjord bathymetry and topography is analyzed. Large glacier systems with low slopes terminating in deeper waters are retreating faster than small steep glaciers terminating in shallower water. A relation between mean annual air temperature and aerial retreat rate of tidewater glaciers was found for long time scales. A sudden temperature in − crease, known as the early 20th century warming in Svalbard, and an increase in temperatures during recent decades are well reflected in deglaciation rate. Influence of sea water temperatures on calving and retreat of glaciers was considered and is significant in short−time intervals of the last decade. Surge events are non−climatic factors which com − plicate the record. They are reflected in front advance or fast retreat due to a massive calving depending on the relation between ice thickness and water depth. Despite the influence of many factors, the response of tidewater glaciers to climate change is evident. The average linear retreat rate of all the tidewater glaciers in Hornsund amounted to ~70 ma −1 in 2001–2010 and was higher than the average retreat of other Svalbard tidewater glaciers (~45 ma −1 ). Thus, glaciers of this basin can be considered as more sensitive to climate than glaciers of other regions of the archipelago.
Go to article

Authors and Affiliations

Małgorzata Błaszczyk
Jacek A. Jania
Leszek Kolondra
Download PDF Download RIS Download Bibtex

Abstract

We describe the spatial variability of snow accumulation on three selected glaciers in Spitsbergen (Hansbreen, Werenskioldbreen and Aavatsmarkbreen) in the winter seasons of 1988/89, 1998/99 and 2001/2002 respectively. The distribution of snow cover is determined by the interrelationships between the direction of the glacier axes and the dominant easterly winds. The snow distribution is regular on the glaciers located E-W, but is more complicated on the glaciers located meridionally. The western part of glaciers is more predisposed to the snow accumulation than the eastern. This is due to snowdrift intensity. Statistical relationships between snow accumulation, deviation of accumulation from the mean values and accumulation variability related to topographic parameters such as: altitude, slope inclination, aspect, slope curvature and distance from the edge of the glacier have been determined. The only significant relations occured between snow accumulation and altitude (r = 0.64-0.91).

Go to article

Authors and Affiliations

Mariusz Grabiec
Jan Leszkiewicz
Piotr Głowacki
Jacek Jania
Download PDF Download RIS Download Bibtex

Abstract

The results from a hydrological monitoring program of Breelva basin (Spitsbergen, Svalbard) have been analysed to improve the understanding of the Werenskiöld Glacier system’s functioning in the High Arctic. Hydrographs of a 44 km 2 river basin (27 km 2 of which was covered by a glacier) were analysed for the period 2007–2012. Seasonal discharge fluctuations were linked to glacier ablation and meteorological parameters, including atmospheric circulation types. A dichotomy was found in the discharge peaks generation during the hydrologically active season, with the main role played by snow and ice melt events during its first part and the rainfall regime dominating its second part. Foehn type strong winds played a significant role in the generation of ablation type floods ( e.g. in August 2011). A simple classification of the runoff regime was applied to the examined six−year period, resulting in the identification of its three types: the ablation type (dominant in 2007 and 2009), the rainfall type (in the years 2011–2012), and the mixed type (during 2008 and 2010). According to publications the river flow season in Spitsbergen begins in June and end with freeze−up in September or at the beginning of October. Recently, this season for Breelva tend to be extended with the mid−May onset and end in the second part of October. A multiannual trend was noted that reflects a growing importance of rainfalls, especially in September. Rainfall waters play a more distinct role in outflow from the Breelva catchment recently.
Go to article

Authors and Affiliations

Elżbieta Majchrowska
Jacek Jania
Dariusz Ignatiuk
Henryk Marszałek
Mirosław Wąsik
Download PDF Download RIS Download Bibtex

Abstract

Hansbreen, a medium size tidewater glacier in Southern Spitsbergen (Svalbard) is one of the most intensively studied glaciers in the Arctic. This work presents new digital elevation models of its surface and basal topography based on data collected during GPS/GPR campaigns conducted in the spring seasons of 2005 and 2008, as well as on other recent topographic/bathymetric sources. The mean thickness of the glacier is calculated as 171 m and its volume is estimated to be 9.6 (±0.1) km 3 . The main feature of the bedrock morphology is a vast depression that is overdeepened below sea level and extends as far as 11 km upstream from the glacier front. This depression is divided into four individual basins by distinct sills that are related to the main geological/tectonic features of the area. The bedrock morphology affects considerably the glacier’s surface topography. The influence of bedrock and surface relief on the subglacial drainage system geometry is discussed. Vast depressions on the glacier surface favor concentration of meltwater and development of moulin systems.
Go to article

Authors and Affiliations

Mariusz Grabiec
Tomasz Budzik
Jacek A. Jania
Dariusz Puczko
Leszek Kolondra

This page uses 'cookies'. Learn more