Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the past decades, Mg alloys have been studied intensively as potential orthopedic applications. The present research work, the FEA of the obtained contact stresses in the case of the load applied on Mg-0.5Ca-xMn alloys has been investigated. It has been used the NCB Curved Femur Shaft Plate type as a model in order to establish the necessary modeling parameters. The objective of the present work was to highlight the strain values at the contact point on the surface of the Mg-0.5Ca-xMn alloys. The results showed that the highest stresses observed near the gaps of the plate and in the screws. It means that all mechanical loads are sustained by the plate and screws, and the patient’s femur can be recovered.
Go to article

Authors and Affiliations

R.O. Nastasa
1
ORCID: ORCID
A. Tufescu
1
ORCID: ORCID
C. Munteanu
1 2
ORCID: ORCID
B. Istrate
1
ORCID: ORCID
A. Przybył
3
ORCID: ORCID
G. Ianus
1
ORCID: ORCID

  1. Gheorghe Asachi Technical University, Faculty of Mechanical Engineering, Blvd. Mangeron, No. 43, 700050, Iasi, Romania
  2. Technical Science Academy of Romania, 26 Dacia Blvd, Bucharest 030167, Romania
  3. Częstochowa University of Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Copper-based alloys with the addition of Al present excellent properties and can be considered a proper choice for applications as contact materials based on their good strength and fret resistance. Cu-Al alloys are used in different systems parts as bearings, gears and worm gears. The intention is to replace steel materials with new copper-based materials for parts that work in a possible explosive environment to reduce the possibility of spark appearance. Copper-berilyum alloys are known as non-sparking alloys and are used in different tools obtaining for environments with possible explosive gaseous. Results from the obtaining and analysis of a new alloy based on CuAlBe are given. The material was melted in a vacuum induction furnace from CuBe master alloy and high purity aluminium and cast into a metallic die. The alloys obtained were analyzed using EDS – energy dispersive spectroscopy for chemical composition, OM-optical and SEM-electronic microscopy for the microstructure, and the electro-corrosion resistance was tested using linear Tafel diagram and cyclic potentiometry.
Go to article

Authors and Affiliations

R.G Chelariu
1
ORCID: ORCID
N. Cimpoeșu
1
ORCID: ORCID
T.I. Birnoveanu
1
ORCID: ORCID
B. Istrate
2
ORCID: ORCID
C. Baciu
1
ORCID: ORCID
C. Bejinariu
1
ORCID: ORCID

  1. “Gheorghe Asachi” University of Iasi, Faculty of Materials Science Engineering, Prof.dr.doc. D. Mangeron Street, no. 41, Iași 700050, Romania
  2. “Gheorghe Asachi” University of Iasi, Faculty of Mechanical Engineering, Prof.dr.doc. D. Mangeron Street, No. 61-63, Iași 700050, Romania
Download PDF Download RIS Download Bibtex

Abstract

In this case ceramic layers from Metco ZrO2 and Al2O3 powders mixture (25/75; 50/50 and 75/25) were obtained through atmospheric plasma spraying (APS) after five passes on low carbon steel substrate. The sample surfaces mechanically grinded (160-2400) before and after ceramic layer deposition. Powder’s mixtures and the surface of ceramic thin layers were analyzed through: scanning electron microscopy (SEM). In order to understand the effect of surface wettability of the ceramic layers, before and after grinding the surface, three different liquids were used. Experimental results confirm the modification of the steel substrate surface characteristic from hydrophilic to hydrophobic when the ceramic layer was deposited. Surface free energy of hydration increases for all the samples with zirconia percentage addition before polishing process.
Go to article

Authors and Affiliations

M. Luțcanu
1 2
ORCID: ORCID
M. Coteață
3
ORCID: ORCID
M.A. Bernevig
1
ORCID: ORCID
C.D. Nechifor
2
ORCID: ORCID
M.M. Cazacu
2
ORCID: ORCID
P. Paraschiv
4
ORCID: ORCID
B. Istrate
5
ORCID: ORCID
G. Bădărău
1
ORCID: ORCID
I.G. Sandu
1
ORCID: ORCID
N. Cimpoeșu
1
ORCID: ORCID

  1. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, Prof.dr.doc. D. Mangeron no. 41 Street, 700050 Iasi, Romania
  2. "Gheorghe Asachi” Technical University of Iasi, Department of Physics, 700050 Iasi, Romania
  3. Gheorghe Asachi Tech Univ Iasi, Dept Machine Mfg Technol, 59A D Mangeron Blvd, Iasi 700050, Romania
  4. “Gheorghe Asachi” Technical University of Iasi, Department of Sport, 700050 Iasi, Romania
  5. Gheorghe Asachi Tech Univ Iasi, Fac Mech Engn 43 D Mangeron St, Iasi 700050, Romania

This page uses 'cookies'. Learn more