Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The goal of this paper is to present the author’s thoughts on the possible contribution of

quality engineering to sustainable development. It is indicated that in the product life cycle

designers have the greatest potential to support this challenge. Arguments have been presented to abandon the commonly accepted paradigm, according to which the overriding goal

of the designer is to achieve the highest market value possible measured by the prospected

level of demand for the products designed. It is postulated to include the minimization of

the risks brought to the natural environment and social relations as a criterion of product

design quality. To this goal, it is necessary for designers to pursue both environmentally

friendly materials and technologies and design concepts reducing consumers’ pressure on

continuously increasing demand. Such an approach will allow for more effective control of

consumption, the main cause of the negative effects of economic growth.

Go to article

Authors and Affiliations

Adam Hamrol
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the paper is to present the author’s reflections on the origin and popularity

of various approaches to maintenance and improvement of production processes, their

terminological consistency, understanding, and practical application of their principles. The

author’s reflections are based on his observations made over his many years of activity as

a lecturer and consultant in the area of production engineering and management. It was

shown that there is a need to make scientists and practitioners aware of the relatively large

degree of freedom in defining the scope and way of application of strategies of continuous

improvement. The author’s proposal is to refer to all approaches to maintenance and improvement

of production processes with the title “Strategies of Efficient Action” and all

supporting methods as “Practices of Efficient Action”.

Considerations presented in the paper can be useful in more and more efficiently applying

the power of TQM, Six Sigma, Lean Manufacturing and other strategies of processes

maintenance and improvement in the daily activities of companies.

Go to article

Authors and Affiliations

Adam Hamrol
Download PDF Download RIS Download Bibtex

Abstract

Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management. The main purpose of Management and Production Engineering Review is to publish the results of cutting-edge research advancing the concepts, theories and implementation of novel solutions in modern manufacturing. Papers presenting original research results related to production engineering and management education are also welcomed. We welcome original papers written in English. The Journal also publishes technical briefs, discussions of previously published papers, book reviews, and editorials. Letters to the Editor-in-Chief are highly encouraged.
Go to article

Authors and Affiliations

Mariusz Bożek
Adam Hamrol
Download PDF Download RIS Download Bibtex

Abstract

The article presents tools, methods and systems used in mechanical engineering that in

combination with information technologies create the grounds of Industry 4.0. The authors

emphasize that mechanical engineering has always been the foundation of industrial activity,

while information technology, the essential part of Industry 4.0, is its main source of innovation.

The article discusses issues concerning product design, machining tools, machine tools

and measurement systems.

Go to article

Authors and Affiliations

Adam Hamrol
Józef Gawlik
Jerzy Sładek
Download PDF Download RIS Download Bibtex

Abstract

Contemporary societies are strongly dependent existentially and economically on the supply of electricity, both in terms of supplying devices from the power grid, as well as the use of energy storage and constant voltage sources. Electrochemical batteries are commonly used as static energy storage. According to forecasts provided by the Environmental Protection Agency at the global and EU level, in 2025 lead-acid technologies will continue to dominate, with the simultaneous expansion of the lithium-ion battery market. The production, use and handling of used batteries are associated with a number of environmental and social challenges. The way batteries influence the environment is becoming more and more significant, not only in the phase of their use but also in the production phase. The article presents how to effectively reduce the environmental impact of the battery production process by stabilizing it. In the presented example, the proposed changes in the battery assembly process facilitated the minimization of material losses from 0.33% to 0.05%, contributing to the reduction of the negative impact on the environment.
Go to article

Authors and Affiliations

Agnieszka Kujawinska
1
ORCID: ORCID
Adam Hamrol
1
ORCID: ORCID
Krzysztof Brzozowski
1

  1. Poznan University of Technology, Plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Controlled Atmosphere Brazing (CAB) process together with NOCOLOKr flux is associated with the occurrence of potassium fluoroaluminate residue inside the cooler. Excess of this flux residue is known to cause gelation of the coolant, which deteriorates the efficiency of the cooler. The flux residue amount is most often measured via Atomic Absorption Spectroscopy (AAS), in accordance with DIN ISO 9964-3. This is a time-consuming measurement that requires the use of specialized equipment and costly solvents. The following article presents two innovative methods for flux residue measurement after CAB process. They include Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS) and Reflected Light Microscopy (RLM) with Differential Interference Contrast (DIC) module. The accuracy of these methods has been compared to the reference AAS method to evaluate their potential as alternative, less expensive, and quicker measurement methods for determining the quantity of flux residue.
Go to article

Authors and Affiliations

Sławomir NADOLNY
Adam Hamrol
ORCID: ORCID
Michał Rogalewicz
ORCID: ORCID
Adam Piasecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on the influence of the parameters of Fused Deposition Modelling (FDM) on the mechanical properties and geometric accuracy of angle-shaped parts. The samples were manufactured from acrylonitrile butadiene styrene (ABS) on a universal machine. A complete factorial experiment was conducted. The results indicated that the critical technological parameter was the angular orientation of the sample in the working chamber of the machine. The results were compared with the results of research performed on simple rectangular samples. A significant similarity was found in the relationships between the FDM parameters and properties for both sample types.
Go to article

Bibliography

  1.  T. Kudasik and S. Miechowicz, “Methods of reconstructing complex multi-structural anatomical objects with RP techniques”, Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 315‒323 (2016), doi: 10.1515/bpasts-2016-0036.
  2.  O. Ivanova, C. Williams, and T. Campbell, “Additive manufacturing (AM) and nanotechnology, promises and challenges”, Rapid Prototyp. J. 19, 353‒364 (2013), doi: 10.1108/RPJ-12-2011-0127.
  3.  J. Safka, M. Ackermann, and D. Martis, “Chemical resistance of materials used in additive manufacturing”, MM Sci. J. 2016, 1573‒1578 (2016), doi: 10.17973/MMSJ.2016_12_2016185.
  4.  R.I. Campbell, D. Bourell, and I. Gibson, “Additive manufacturing, rapid Prototyp. comes of age”, Rapid Prototyp. J. 18, 255‒258 (2012), doi: 10.1108/13552541211231563.
  5.  T. Kudasik, M. Libura, O. Markowska, and S. Miechowicz, “Methods for designing and fabrication large-size medical models for orthopaedics”, Bull. Pol. Acad. Sci. Tech. Sci. 63(3), 623‒627 (2015), doi: 10.1515/bpasts-2015-0073.
  6.  G.N. Levy, R. Schindel, and J.P. Kruth, “Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives”, CIRP Ann. 52, 589‒609 (2003), doi: 10.1016/S0007-8506(07)60206-6.
  7.  D. Croccolo, M. De Agostinis, and G. Olmi, “Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30”, Comput. Mater. Sci. 79, 506–518 (2013), doi: 10.1016/j.commatsci.2013.06.041.
  8.  S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing”, Chem Rev. 117, 10212‒10290 (2017), doi: 10.1021/acs.chemrev.7b00074.
  9.  I. Rojek, D. Mikołajewski, P. Kotlarz, M. Macko, and J. Kopowski, “Intelligent System Supporting Technological Process Planning for Machining and 3D Printing”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136722 (2021), doi: 10.24425/bpasts.2021.136722.
  10.  D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, “FDM process parameters influence over the mechanical properties of polymer specimens, A review”, Polym. Test. 69, 157‒166 (2018), doi: 10.1016/j.polymertesting.2018.05.020.
  11.  M. Montero, R. Shad, D. Odell, S.H. Ahn, and P.K. Wright, “Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments”, Soc. Manuf. Eng. 10, 1‒21 (2001).
  12.  H.C. Song, N. Ray, D. Sokolov, and S. Lefebvre, “Anti-aliasing for fused filament deposition. Comput”, Aided Des. 89, 25‒34 (2017), doi: 10.1016/j.cad.2017.04.001.
  13.  S.H. Ahn, M. Montero, D. Odell, S. Roundy, and P.K. Wright, “Anisotropic material properties of fused deposition modeling ABS”, Rapid Prototyp. J. 8, 248‒257 (2002), doi: 10.1108/13552540210441166.
  14.  C. Casavola, A. Cazzato, V. Moramarco, and C. Pappalettere, “Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory”, Mater. Des. 90, 453‒458 (2016), doi: 10.1016/j.matdes.2015.11.009.
  15.  O.A. Mohamed, S.H. Masood, J.L. Bhowmik, M. Nikzad, and J. Azadmanjiri, “Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment”, J. Mater. Eng. Perform. 25, 2922–2935 (2016), doi: 10.1007/ s11665-016-2157-6.
  16.  A.K. Sood, R.K. Ohdar, and S.S. Mahapatra, “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Mater. Des. 31, 287–295 (2010), doi: 10.1016/j.matdes.2009.06.016.
  17.  G.C. Onwubolu and F. Rayegani, “Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process”, Int. J. Manuf. Eng. 2014, 598531 (2014), doi: 10.1155/2014/598531.
  18.  M. Spoerk, F. Arbeiter, H. Cajner, J. Sapkota, and C. Holzer, “Parametric optimization of intra and interlayer strengths in parts produced by extrusion based additive manufacturing of poly(lactic acid)”, J. Appl. Polym. Sci. 134, 45401 (2017), doi: 10.1002/app.45401.
  19.  A. Peng, X. Xiao, and R. Yue, “Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system”, Int. J. Adv. Manuf. Technol. 73, 87‒100 (2014), doi: 10.1007/s00170-014-5796-5.
  20.  G. Papazetis, G.C. Vosniakos, “Mapping of deposition-stable and defect-free additive manufacturing via material extrusion from minimal experiments”, Int. J. Adv. Manuf. Technol. 100, 2207‒2219 (2019), doi: 10.1007/s00170-018-2820-1.
  21.  S. Mahmood, A.J. Qureshi, K.L. Goh, and D. Talamona, “Tensile strength of partially filled FFF printed parts, experimental results”, Rapid Prototyp. J. 23, 122‒128 (2017), doi: 10.1108/RPJ-08-2015-0115.
  22.  S. Abid et al., “Optimization of mechanical properties of printed acrylonitrile butadiene styrene using RSM design”, Int. J. Adv. Manuf. Technol. 100, 1363‒1372 (2019), doi: 10.1007/s00170-018-2710-6.
  23.  V.E. Kuznetsov, A.N. Solonin, O.D. Urzhumtsev, R. Schilling, and A.G Tavitov, “Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process”, Polymers 10, 1‒16 (2018), doi: 10.3390/polym10030313.
  24.  L. Yang, S. Li, Y. Li, and Y. Mingshun, “Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts”, J. Mater. Eng. Perform. 28, 169‒182 (2019), doi: 10.1007/s11665-018-3784-x.
  25.  J.T. Belter and A.M. Dollar, “Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique”, PloS One 10(4) (2015), doi: 10.1371/journal.pone.0122915.
  26.  J.A. Gopsill, J. Shindler, and B.J. Hicks, “Using finite element analysis to influence the infill design of fused deposition modelled parts”, Prog. Addit. Manuf. 3, 145‒163 (2018), doi: 10.1007/s40964-017-0034-y.
  27.  G.A.M. Capote, N.M. Rudolph, P.V. Osswald, and A.T. Osswald, “Failure surface development for ABS fused filament fabrication parts”, Addit. Manuf. 28, 169‒175 (2019), doi: 10.1016/j.addma.2019.05.005.
  28.  F. Gorski, R. Wichniarek, W. Kuczko, and A. Hamrol, “Selection of Fused Deposition Modeling Process Parameters using Finite Element Analysis and Genetic Algorithms”, J. Mult.-Valued Logic Soft Comput. 32, 293‒311 (2019).
Go to article

Authors and Affiliations

Wiesław Kuczko
1
ORCID: ORCID
Adam Hamrol
1
ORCID: ORCID
Radosław Wichniarek
1
ORCID: ORCID
Filip Górski
1
ORCID: ORCID
Michał Rogalewicz
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 61-138 Poznan, Poland

This page uses 'cookies'. Learn more