Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents one of the environmental problems occurring during underground mine closures: according to the underground coal mine closure programme in Germany, the behaviour of the land surface caused by flooding of the entire planned mining area – the Ruhr District – had to be addressed. It was highlighted that water drainage would need to be continuous; otherwise, water levels would rise again in the mining areas, resulting in flooding of currently highly urbanised zones. Based on the variant analysis, it was concluded that the expected uniform ground movements caused by the planned rise in the mining water levels (comprising a part of two concepts – flooding up to the level of –500 m a.s.l. and −600 m a.s.l.), in the RAG Aktiengesellschaft mines, will not result in new mining damage to traditional buildings. The analysis included calculations of the maximum land surface uplift and the most unfavourable deformation factor values on the land surface, important from the point of view of buildings and structures: tilt T, compressive strain ε– and tensile strain ε+. The impact of flooding on potential, discontinuous land surface deformation was also analysed.
Go to article

Authors and Affiliations

Krzysztof Tajduś
1
ORCID: ORCID
Anton Sroka
2
ORCID: ORCID
Mateusz Dudek
2
ORCID: ORCID
Rafał Misa
2
ORCID: ORCID
Stefan Hager
3
ORCID: ORCID
Janusz Rusek
1
ORCID: ORCID

  1. AGH University of Krakow, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  2. Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
  3. R AG Aktiengesellschaft, Essen, Germany
Download PDF Download RIS Download Bibtex

Abstract

The article presents three German-located case studies based on stochastic methods founded by the theory proposed by Knothe and the development of the ‘Ruhrkohle method’ according to Ehrhardt and Sauer. These solutions are successfully applied to predict mining-induced ground movements. The possibility of forecasting both vertical and horizontal ground movements has been presented in the manuscript, which allowed for optimization mining projects in terms of predicted ground movements.
The first example presents the extraction of the Mausegatt seam beneath the district of Moers-Kapellen in the Niederberg mine. Considering, among others, the adaption of the dynamic impact of the underground operations to the mining-induced sensitivity of surface objects, the maximum permissible rate of the face advance has been determined.
The second example presents the extraction of coal panel 479 in the Johann seam located directly in the fissure zone of Recklinghausen-North. Also, in this case, the protection of motorway bridge structure (BAB A43/L225) to mining influences has been presented. The Ruhrkohle method was used as a basis for the mathematical model that was developed to calculate the maximum horizontal opening of the fissure zone and the maximum gap development rate.
Part of the article is dedicated to ground uplift due to rising mine water levels. Although it is not the main factor causing mining-related damage, such movements in the rock masses should also be predicted. As the example of the Königsborn mine, liquidated by flooding, shows stochastic processes are well suited for predicting ground uplift. The only condition is the introduction of minor adjustments in the model and the use of appropriate parameters.
Go to article

Authors and Affiliations

Anton Sroka
1
ORCID: ORCID
Stefan Hager
2
ORCID: ORCID
Rafał Misa
1
ORCID: ORCID
Krzysztof Tajduś
1
ORCID: ORCID
Mateusz Dudek
1
ORCID: ORCID

  1. Strata Mechanics Research Institute, Polish Academy of Science, Kraków, Poland
  2. RAG Aktiengesellschaft, Im Welterbe 10, 45141 Essen, Germany

This page uses 'cookies'. Learn more