Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Over the years laser welding has evolved as a fabrication process capable of overcoming the limitations of conventional joining methodologies. It facilitates the welding of diverse range of materials like metals, non-metals, polymers etc. Laser transmission welding is a technique employed for fabricating intricate shapes/contours in polymers with better precision compared to the other conventional processes. Nylon6, a synthetic semi-crystalline polymer is utilized as an engineering thermoplastic due to its high strength and temperature resistant properties. In the earlier researches, various welding techniques were employed for the fabrication of polymers and metals keeping the laser beam stagnant, and much emphasis was given only to temperature distribution along the different axes and limited attention was given to residual stress analysis. Therefore, in this research work, a three-dimensional time-dependent model using a moving laser beam is used to fabricate unreinforced Nylon6 specimens.

Go to article

Authors and Affiliations

Santosh Kumar Gupta
Pradip Kumar Pal
Download PDF Download RIS Download Bibtex

Abstract

Among the FACTS device, the distributed power flow controller (DPFC) is a superior device. This can be evaluated after eliminating the dc capacitor between shunt and series convertors of the unified power flow controller (UPFC) and placing a number of low rating single phase type distributed series convertors in the line instant of using single large rating three phase series convertors as in the UPFC. The power flow through this dc capacitor as in the UPFC now takes place through the transmission line at a third harmonic frequency in the DPFC. The DPFC uses the D-FACTS that allows the replacement of a large three-phase converter as in the UPFC by several small-size series convertors present in the DPFC. The redundancy of several series convertors increases the system’s reliability of the power system. Also, there is no requirement for high voltage isolation as series convertors of the DPFC are hanging as well as single-phase types. Consequently, the DPFC system has a lower cost than the UPFC system. In this paper, the equivalent ABCD parameters of the latest FACTSdeviceDPFChave been formulated with the help of an equivalent circuit model of the DPFC at the fundamental frequency component. Further, the optimal location in the transmission line and maximum efficiency of the DPFC along with Thyristor Controlled Series Compensator (TCSC), Static Synchronous Shunt Compensator (STATCOM) and UPFC FACTS devices have been investigated using an iteration program developed in MATLAB under steady-state conditions. The results obtained depict that the DPFC when placed slightly off-center at 0.33 fraction distance from the sending end comes up with higher performance. Whereas, when the TCSC, STATCOM and UPFC are placed at 0.16, 0.2815, 0.32 fraction distances from sending end respectively give their best performance.
Go to article

Bibliography

[1] Edris A.A., Aapa R., Baker M.H., Bohman L., Clark K., Proposed terms and definitions for flexible ac transmission system (FACTS), IEEE Trans. on Power Delivery, vol. 12, no. 4, pp. 1848–1853 (1997), DOI: 10.1109/61.634216.

[2] Das D., Divan D.M., Harley R.G., Power flow control in networks using controllable network transformers, IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1753–1760 (2010), DOI: 10.1109/ TPEL.2010.2042076.

[3] Ooi B.T., Kazerrani M., Marcean R., Wolanski Z., Galiana F.D., Megillis D., Jms G., Midpoint siting of FACTS devices in transmission lines, IEEE Trans. on power delivery, vo1. 12, no. 4, pp. 1717–1722 (1997), DOI: 10.1109/61.634196.

[4] Hingorani N.G., Gyugyi L., Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, New York: IEEE Press (2000).

[5] Nabavi-Niak A., Iravani M.R., Steady-State and Dynamic Models of Unified Power Flow Con- troller (UPFC) for Power System Studies, IEEE Trans. Power Systems, vol. 11, no. 4 (1996), DOI: 10.1109/59.544667.

[6] Harjeet Johal, Deepak Divan, Design Considerations for Series-Connected Distributed FACTS Converters, IEEE Transactions on Industry Applications, vol. 43, iss. 6, pp. 1609–1618 (2007), DOI: 10.1109/TIA.2007.908174.

[7] Amir Hamidi, Sajjad Golshannavaz, Daryoush Nazarpour, D-FACTS Cooperation in Renewable Inte- grated Microgrid A Linear Multiobjective Approach, IEEE Transactions on Sustainable Energy, vol. 10, iss. 1, pp. 355–363 (2019), DOI: 10.1109/TSTE.2017.2723163.

[8] Narasimha Rao D., Srinivasa Varma P., Comparison of UPFC and DPFC, Journal of Critical Reviews, vol. 7, iss. 6 (2020), DOI: 10.31838/jcr.07.06.153.

[9]Abhilash Sen, Atanu Banerjee, Haricharan Nannam, A Comparative Analysis between UPFC and DPFC in a Grid Connected Photovoltaic System, IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS) (2019), DOI: 10.1109/IN- COS45849.2019.8951352.

[10] Song W., Zhou X., Zhigang Liang, Subhashish Bhattacharya, Huang Alex Q., Modeling and Control Design of Distributed Power Flow Controller based-on Per-phase control, IEEE Energy Conversion Congress and Exposition (2009), DOI: 10.1109/ECCE.2009.5316307.

[11] Chandrakar V.K., Kothari A.G., Optimal Location for Line Compensation by Shunt Connected FACTS Controller, IEEE Power Electronics and Drive Systems Conference, vol. 1, pp. 151–156 (2003), DOI: 10.1109/PEDS.2003.1282736.

[12] Vikash Anand, Sanjeev Kumar Mallik, Power flow analysis and control of distributed FACTS de- vices in power system, Archives of Electrical Engineering, vol. 67, no. 3, pp. 545–561 (2018), DOI: 10.24425/123662.

[13] Zhihui Yuan, de Haan Sjoerd W.H., Ferreira Jan A., Construction and first result of a scaled transmis- sion system with the Distributed Power Flow Controller (DPFC), 13th European Conference on Power Electronics and Applications (2009).

[14] Zhihui Yuan, de Haan Sjoerd W.H., Braham Frreira, Dalibor Cevoric, A FACTS Device: Dis- tributed Power Flow Controller (DPFC), IEEE Trans. Power Electronics, vol. 25, no. 10 (2010), DOI: 10.1109/TPEL.2010.2050494.

[15] Syona Chawla, Sheetal Garg, Bhawna Ahuja, Optimal Location of Series-Shunt FACTS Device for Transmission Line Compensation, IEEE Control, Automation, Communication and Energy Conservation Conference, pp. 1–6 (2009).

[16] Shehata Ahmed A., Refaat Ahmed, Mamdouh K. Ahmed, Korovkin Nikolay V., Optimal placement and sizing of FACTS devices based on Autonomous Groups Particle Swarm Optimization technique, AEE, vol. 70, no. 1, pp. 161–172 (2021), DOI: 10.24425/aee.2021.136059.

[17] Riadh Essaadali, Anwar Jarndal, Ammar B. Kouki, Fadhel M. Ghannouch, Conversion Rules Between X-Parameters and Linearized Two-Port Network Parameters for Large-Signal Operating Conditions, IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 11, pp. 4745 4756 (2018), DOI: 10.1109/TMTT.2018.2863227.

[18] Divya S., Shyamala U., Power quality improvement in transmission systems using DPFC, IEEE 2nd International Conference on Electronics and Communication Systems (ICECS) (2015), DOI: 10.1109/ ECS.2015.7125035.

[19] Apolinar Reynoso-Hernández J., Pulido-Gaytán M.A., Cuesta R., Loo-Yau J.R., Maya-Sánchez M.C., Transmission Line Impedance Characterization Using an Uncalibrated Vector Network Analyzer, IEEE Microwave and Wireless Components Letters, vol. 30, no. 5, pp. 528–530 (2020), DOI: 10.1109/ LMWC.2020.2984377.

[20] Monika Sharma, Annapurna Bhargava, Pinky Yadav, Oscillation Damping with DPFC Using Opti- mization Techniques, IEEE International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE) (2017), DOI: 10.1109/ICMETE.2016.73.

[21] Mengmeng Xiao, Shaorong Wang, Yong Huang, Chao Zheng, Qiushi Xu, Hongsheng Zhao, Aihong Tang, Dichen Liu, Two-Level Control Method for DPFC Series Units Based on PLC Communication, 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 20–22 (2018), DOI: 10.1109/EI2.2018.8582109.

[22] Zhai X., Tang A., Zou X., Xu Zheng, Qiushi Xu, Research on DPFC Capacity and Parameter Design Method, IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA) (2020), DOI: 10.1109/ICIBA50161.2020.9277315.

[23] Pradhan A.K., Routray A., Banaja Mohanty, Maximum efficiency of flexible AC transmission systems, Electrical Power and Energy Systems, vol. 28, pp. 581–588 (2006), DOI: 10.1016/j.ijepes.2006.03.014.

[24] Seyed Abbas Taher, Muhammad Karim Amooshahi, New approach for optimal UPFC placement using hybrid immune algorithm in electric power systems, International Journal of Electrical Power and Energy Systems, vol. 43, iss. 1, pp. 899–909 (2012), DOI: 10.1016/j.ijepes.2012.05.064.


Go to article

Authors and Affiliations

Santosh Kumar Gupta
Jayant Mani Tripathi
Mrinal Ranjan
Ravi Kumar Gupta
Dheeraj Kumar Gupta
Download PDF Download RIS Download Bibtex

Abstract

Due to recent developments in the field of high-power and medium-voltage, the multilevel inverter has raised to such an extent owing to some of its amazing facts regarding harmonic spectrum, ease in control, reduced electromagnetic interference (EMI), filterless circuit, stress on power switches, common-mode voltage. This paper well describes a novel architecture of a single-phase multilevel inverter using a lesser number of overall components, especially the power switches. The proposed topology is generalized in the structure that can generate any number of voltage steps. A 7-level structure of the proposed topology is explained and is elaborately discussed. Simulation is carried out in MATLAB and corresponding experimental results verify the existence of the proposed multilevel inverter. The real-time experimental results were presented and are well verified by the simulation results for 7-level as well for 13-level across RL-Load. The nature of load current is also indicated as per the nature of load voltage. Nevertheless, the topology is further compared with some of the recent literature and found superior in each respect.
Go to article

Authors and Affiliations

Bidyut Mahato
1
ORCID: ORCID
Mrinal Ranjan
2
Pradipta Kumar Pal
3
Santosh Kumar Gupta
4
Kailash Kumar Mahto
2

  1. ABES Engineering College, Ghaziabad, UP – 201009, India
  2. Gaya College of Engineering, Gaya, Bihar – 823003, India
  3. Indian Institute of Technology (Indian School of Mines), Dhanbad – 826004, India
  4. Government Engineering College, Siwan, Bihar – 841226, India

This page uses 'cookies'. Learn more