Search results

Filters

  • Journals
  • Date

Search results

Number of results: 25
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of studies on the effect of the nodular cast iron metal matrix composition on the abrasive and adhesive wear resistance. Nodular cast iron with different metal matrix obtained in the rough state and ADI were tested. To research of abrasive and adhesive wear the pearlitic and bainitic cast iron with carbides and without this component were chosen. The influence of the carbides amount for cast iron wear resistance was examined. It was found, that the highest abrasive and adhesive wear resistance under conditions of dry friction has a nodular cast iron with carbides with upper and lower bainite. Carbides in bainitic and pearlitic cast iron significantly increase the wear resistance in these conditions. In terms of fluid friction the largest wear resistance had cast iron group with the highest hardness.

Go to article

Authors and Affiliations

G. Gumienny
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of the abrasive wear resistance of selected types of nodular cast iron, including ADI, cooperating with quartz sand and 100 grit abrasive paper. It has been shown that carbides in nodular cast iron cause an increase in wear resistance of 6 to 12% depending on the surface fraction of the carbides and type of the matrix. For the same unit pressure the mass loss of the cast iron cooperating with quartz sand is many times larger than the cast iron cooperating with abrasive paper. For both abrasives the highest wear resistance showed nodular cast iron with upper and lower bainite and carbides.
Go to article

Authors and Affiliations

G. Gumienny
Download PDF Download RIS Download Bibtex

Abstract

In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

Go to article

Authors and Affiliations

S. Pietrowski
G. Gumienny
Download PDF Download RIS Download Bibtex

Abstract

This paper shows how it is possible to obtain an ausferrite in compacted graphite iron (CGI) without heat treatment of castings. Vermicular graphite in cast iron was obtained using Inmold technology. Molybdenum was used as alloying additive at a concentration from 1.6 to 1.7% and copper at a concentration from 1 to 3%. It was shown that ausferrite could be obtained in CGI through the addition of molybdenum and copper in castings with a wall thickness of 3, 6, 12 and 24 mm. Thereby the expensive heat treatment of castings was eliminated. The investigation focuses on the influence of copper on the crystallization temperature of the graphite eutectic mixture in cast iron with the compacted graphite. It has been shown that copper increases the eutectic crystallization temperature in CGI. It presents how this element influences ausferrite microhardness as well as the hardness of the tested iron alloy. It has been shown that above-mentioned properties increases with increasing the copper concentration.

Go to article

Authors and Affiliations

G. Gumienny
B. Kacprzyk
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of hypoeutectic 226 grade alloy as well as prepared on its basis Al-Si alloy containing Cr, V and Mo. The

additives tested were added as AlCr15, AlV10 and AlMo8 master alloys. Alloys tested were poured into DTA sampler as well as using

pressure die casting. An amount of Cr, V and Mo additives in alloy poured into DTA sampler comprised within the range approximately

0.05-0.35%. Alloys to pressure die casting contained 0.05-0.20% Cr, V and Mo. The crystallization process was examined using the derivative

thermal analysis (DTA). The microstructure of castings made in the DTA sampler as well as castings made with use of pressure die

casting were examined. The basic mechanical properties of castings made using pressure die casting were defined too. It has been shown

in the DTA curves of Al-Si alloy containing approximately 0.30 and 0.35% Cr, Mo, and V there is an additional thermal effect probably

caused by a peritectic crystallization of intermetallic phases containing the aforementioned additives. These phases have a morphology

similar to the walled and a relatively large size. The analogous phases also occur in pressure die casting alloys containing 0.10% or more

additions of Cr, V and Mo. The appearance of these phases in pressure die casting Al-Si alloys coincides with a decrease in the value of

the tensile strength Rm and the elongation A. It has been shown die castings made of Al-Si alloys containing the aforementioned additives

have a higher Rm and A than 226 alloy.

Go to article

Authors and Affiliations

G. Gumienny
T. Szymczak
T. Pacyniak
I. Stasiak
Download PDF Download RIS Download Bibtex

Abstract

The work presents the results of the investigations of the effect of the nitrogen (N2) refining time „τraf” and the gas output on the course of

the crystallization process, the microstructure and the gassing degree of silumin 226 used for pressure casting. The refinement of the

examined silumin was performed with the use of a device with a rotating head. The crystallization process was examined by way of

thermal analysis and derivative analysis TDA. The performed examinations showed that the prolongation of the N2 refining time causes

a significant rise of the temperature of the crystallization end of the silumin, „tL”, as well as a decrease of its gassing degree, „Z”. An

increase of the nitrogen output initially causes an increase of the temperature „tL” and a drop of the gassing degree „Z”, which reach their

maximal values with the output of 20 dm3

/min. Further increase of the output causes a decrease of the value „tL” and an increase of „Z”.

The examined technological factors of the refining process did not cause any significant changes in the microstructure of silumin 226.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the effect of the temperature and hold time in the holding furnace of 226 silumin on the characteristic quantities of

TDA curves. The temperature of phase transformations and the cooling rate were tested.It has been shown that increasing both the hold

time and the temperature in the holdingfurnace cause the decreasethe end ofα+Al9Fe3Si2+β and α+Al2Cu+βternary eutectics

crystallizationtemperature in the tested silumin. This is due to the fact an increase in amounts of impurities as a result of reacting theliquid

alloy with the gases contained in the air.It has been shown, however, that examined technological factors ofthe metal preparation do not

cause systematic changes in the cooling rate.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

The results of statistical analysis applied in order to evaluate the effect of the high melting point elements to pressure die cast silumin on its tensile strength Rm, unit elongation A and HB were discussed. The base alloy was silumin with the chemical composition similar to ENAC 46000. To this silumin, high melting point elements such as Cr, Mo, V and W were added. All possible combinations of the additives were used. The content of individual high melting point additives ranged from 0.05 to 0.50%. The tests were carried out on silumin with and without above mentioned elements. The values of Rm, A and HB were determined for all the examined chemical compositions of the silumin. The conducted statistical analysis showed that each of the examined high melting point additives added to the silumin in an appropriate amount could raise the values of Rm, A and HB. To obtain the high tensile strength of Rm = 291 MPa in the tested silumin, the best content of each of the additives should be in the range of 0.05-0.10%. To obtain the highest possible elongation A of about 6.0%, the best content of the additives should be as follows: chromium in the range of 0.05-0.15%, molybdenum 0.05% or 0.15%, vanadium 0.05% and tungsten 0.15%. To obtain the silumin with hardness of 117 HB, chromium, molybdenum and vanadium content should be equal to about 0.05%, and tungsten to about 0.5%.

Go to article

Authors and Affiliations

T. Szymczak
J. Szymszal
G. Gumienny
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of studies of the effect of chromium concentration on the solidification process, microstructure and selected

properties of cast iron with vermicular graphite. The vermicular graphite cast iron was obtained by an Inmold process. Studies covered the

cast iron containing chromium in a concentration at which graphite is still able to preserve its vermicular form. The effect of chromium on

the temperature of eutectic crystallization and on the temperature of the start and end of austenite transformation was discussed. The conditions

under which, at a predetermined chromium concentration, the vermicular graphite cast iron of a pearlitic matrix is obtained were

presented, and the limit concentration of chromium was calculated starting from which partial solidification of the cast iron in a metastable

system takes place. The effect of chromium on the hardness of cast iron, microhardness of individual phases and surface fraction of carbides

was disclosed.

Go to article

Authors and Affiliations

G. Gumienny
M. Dondzbach
B. Kacprzyk
Download PDF Download RIS Download Bibtex

Abstract

The work presents the effect of strontium and antimony modification on the microstructure and mechanical properties of 226 silumin casts.

The performed research demonstrated that strontium causes high refinement of silicon precipitations in the eutectic present in the microstructure

of the examined silumin and it significantly affects the morphology of eutectic silicon from the lamellar to the fibrous one. Sr

modification also causes an increase of: the tensile strength „Rm” by 12%; the proof stress „Rp0,2” by 5%; the unit elongation „A” by 36%

and the hardness HB by 13%. Antimony did not cause a change in the microstructure of the silumin, yet it caused an increase in Rm and

HB by 5%, in Rp0,2 by 7% and in A by 4%.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of hypoeutectic silumin 226 grade and silumin produced on its basis through the addition of V and Mo.

Vanadium and molybdenum were added as the preliminary alloy AlV10 and AlMo8 in an amount providing the concentration of 0.1; 0.2;

0.3 and 0.4% V and Mo. TDA curves of tested silumins were presented; regardless of the chemical composition there were similar thermal

effects. Pressure castings microstructure research revealed the presence in silumins with the addition of V and Mo phases do not occur in

silumin without these additives. These phases have a morphology similar to the walled, and their size increases with increasing

concentration of V and Mo. The size of the precipitates of these phases silumin containing 0.1% V and Mo does not exceed 10 microns,

while 0.4% of the content of these elements increases to about 80 microns. Tests of basic mechanical properties of silumins were carried

out. It has been shown that the highest values of tensile strength Rm = 295 MPa and elongation A = 4.2% have silumin containing

approximately 0.1% V and Mo. Increasing concentrations of these elements causes a gradual lowering of the Rm and A values.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

The study presents the results of the application of a statistical analysis for the evaluation of the effect of high-melting additions introduced into a pressure cast Al-Si alloy on the obtained level of its proof stress Rp0.2. The base Al-Si alloy used for the tests was a typical alloy used for pressure casting grade EN AC-46000. The base alloy was enriched with high-melting additions, such as: Cr, Mo, V and W. The additions were introduced into the base Al-Si alloy in all the possible combinations. The content of the particular high-melting addition in the Al-Si alloy was within the scope of 0.05 to 0.50%. The investigations were performed on both the base alloy and alloy with the high-melting element additions. Within the implementation of the studies, the values of Rp0.2 were determined for all the considered chemical compositions of the Al-Si alloy. A database was created for the statistical analysis, containing the independent variables (chemical composition data) and dependent variables (examined Rp0.2 values). The performed statistical analysis aimed at determining whether the examined high-melting additions had a significant effect on the level of Rp0.2 of the Al-Si alloy as well as optimizing their contents in order to obtain the highest values of the Al-Si alloy's proof stress Rp0.2. The analyses showed that each considered high-melting addition introduced into the Al-Si alloy in a proper amount can cause an increase of the proof stress Rp0.2 of the alloy, and the optimal content of each examined high-melting addition in respect of the highest obtained value of Rp0.2 equals 0.05%.
Go to article

Authors and Affiliations

J. Szymszal
G. Gumienny
T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the application of a statistical analysis to evaluate the effect of the chemical composition of the die casting Al-Si alloys on its basic mechanical properties. The examinations were performed on the hypoeutectic Al-Si alloy type EN AC-46000 and, created on its basis, a multi-component Al-Si alloy containing high-melting additions Cr, Mo, W and V. The additions were introduced into the base Al-Si alloy in different combinations and amounts (from 0,05% to 0,50%). The tensile strength Rm; the proof stress Rp0,2; the unit elongation A and the hardness HB of the examined Al-Si alloys were determined. The data analysis and the selection of Al-Si alloy samples without the Cr, Mo, W and V additions were presented; a database containing the independent variables (Al-Si alloy's chemical composition) and dependent variables (Rm; Rp0,2; A and HB) for all the considered variants of Al-Si alloy composition was constructed. Additionally, an analysis was made of the effect of the Al-Si alloy's component elements on the obtained mechanical properties, with a special consideration of the high-melting additions Cr, Mo, V and W. For the optimization of the content of these additions in the Al-Si alloy, the dependent variables were standardized and treated jointly. The statistical tools were mainly the multivariate backward stepwise regression and linear correlation analysis and the analysis of variance ANOVA. The statistical analysis showed that the most advantageous effect on the jointly treated mechanical properties is obtained with the amount of the Cr, Mo, V and W additions of 0,05 to 0,10%.

Go to article

Authors and Affiliations

J. Szymszal
G. Gumienny
T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the research on the effect of copper on the crystallization process, microstructure and selected properties

of the compacted graphite iron. Compacted graphite in cast iron was obtained using Inmold process. The study involved the cast iron

containing copper at a concentration up to approximately 4%. The effect of copper on the temperature of the eutectic crystallization as well

as the temperature of start and finish of the austenite transformation was given. It has been shown that copper increases the maximum

temperature of the eutectic transformation approximately by 5C per 1% Cu, and the temperature of the this transformation finish

approximately by 8C per 1% Cu. This element decreases the temperature of the austenite transformation start approximately by 5C per

1% Cu, and the finish of this transformation approximately by 6C per 1% Cu. It was found that in the microstructure of the compacted

graphite iron containing about 3.8% Cu, there are still ferrite precipitations near the compacted graphite. The effect of copper on the

hardness of cast iron and the pearlite microhardness was given. This stems from the high propensity to direct ferritization of this type of

cast iron. It has been shown copper increases the hardness of compacted graphite iron both due to its pearlite forming action as well as

because of the increase in the pearlite microhardness (up to approx. 3% Cu). The conducted studies have shown copper increases the

hardness of the compacted graphite iron approximately by 35 HB per 1% Cu.

Go to article

Authors and Affiliations

G. Gumienny
B. Kacprzyk
J. Gawroński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the microstructure and selected properties of ausferritic nodular cast iron annealed at the temperature 520 and 550°C.

This choice was dictated by the temperatures used in the practice of nitriding. Nodular graphite in cast iron was obtained with use of

Inmold process. Cast iron containing molybdenum and copper ensuring obtaining an ausferrite in the cast iron matrix without the use of

heat treatment of castings was tested. The effect of annealing temperature on the microstructure and the kind of fracture of the ausferritic

nodular cast iron was presented. The effect of an annealing temperature on hardness, impact strength and the microhardness of ausferritic

nodular cast iron matrix was shown too. The lamellar structure of phases in the cast iron matrix after annealing has been ascertained. There

has been an increase in hardness of an annealed cast iron and microhardness of its matrix. The reduction in the impact strength of the cast

iron annealed at 520 and 550°C was approximately 10-30%. Both an increase in the hardness of cast iron as well as an decrease in its

impact strength is probably due to the separation of secondary carbides during the heat treatment.

Go to article

Authors and Affiliations

G. Gumienny
L. Klimek
B. Kurowska
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of studies in the hypoeutectic silumin destined for pressure die casting with the simultaneous addition of

chromium and tungsten. The study involved the derivative and thermal analysis of the crystallization process, metallographic analysis and

mechanical properties testing. Silumin 226 grade was destined for studies. It is a typical silumin to pressure die casting. AlCr15 and AlW8

preliminary alloys were added to silumin. Its quantity allowed to obtain 0.1, 0.2, 0.3 and 0.4% of Cr and W in the tested alloy. Studies of

the crystallization process as well as the microstructure of the silumin poured into DTA sampler allowed to state the presence of additional

phase containing 0.2% or more Cr and W. It has not occurred in silumin without the addition of above mentioned elements. It is probably

the intermetallic phase containing Cr and W. DTA studies have shown this phase crystallizes at a higher temperature range than α (Al)

solid solution. In the microstructure of each pressure die casting containing Cr and W the new phases formed. Mechanical properties tests

have shown Cr and W additives in silumin in an appropriate amount may increase its tensile strength Rm (about 11%), the yield strength

Rp0.2 (about 21%) and to a small extent elongation A.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

The herein paper contains the results of investigations on a new type of cellulose blend used for the manufacture of profiles applied in the

process of making gating systems in the foundry industry. A standard cellulose profile was subjected to an experiment. During the

experiment the profile was filled with a liquid cast iron and at the same time the temperatures of the liquid metal crystallizing inside the

profile were measured as well as the temperature of the outer layer of the profile was controlled. Further, the microstructure of the cast

iron, which crystallized out inside the cellulose profile, was analysed and the cellulose, thermally degraded after the experiment, was

verified with the use of the chemical analysis method. Moreover, a quality analysis of the original as well as the degraded cellulose profile

was run with the use of the FTIR infrared spectroscopy. The presented results revealed that the cellulose blend is aluminium silicate

enriched and contains organic binder additives. The cast iron, which crystallized out, tended to have an equilibrium pearlitic structure with

the release of graphite and carbides. The generation of disequilibrium ausferrite phases was also observed in the structure.

Go to article

Authors and Affiliations

J. Sawicki
G. Gumienny
Z. Zawieja
A. Sobczyk-Guzenda
Download PDF Download RIS Download Bibtex

Abstract

The work presents the results of the examinations of silumin 226 as well as a silumin produced on its basis containing a W and Mo addition

introduced in the amount of 0.1; 0.2; 0.3 and 0.4% of both elements simultaneously. Investigations of the crystallization process of the

silumins by the TDA method were conducted. Also, a microscopic analysis of their microstructure was performed and their basic mechanical

properties were determined. Microstructure tests were made on casts produced in an TDA sampler as well as by the pressure method.

The investigations exhibited a change in the course of crystallization of the silumin containing 0.3 and 0.4% W and Mo with respect to

silumin 226 and the silumin with the addition of 0.1 and 0.2%. The presence of additional phases which did not occur in the case of lower

addition contents was established in the silumin containing 0.3-0.4% W and Mo, regardless of the applied casting technology. The tests

showed the possibility of increasing the tensile strength Rm, the proof stress Rp0,2 and the unit elongation A of the silumin as a result of a

simultaneous introduction of the W and Mo addition. The highest values of Rm, Rp0,2 and A were obtained in the silumins with the additions

of these elements within the range of 0.1-0.2% each.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak
K. Walas
Download PDF Download RIS Download Bibtex

Abstract

In the article we were studing the impact of the remelting on transformations in Co-Cr-Mo prosthetics alloy. The TDA curves were analyzed, the microstructure was examined, the analysis of the chemical composition and hardness using the Brinell method was made. It was found that the obtained microstructure of the alloys that we studied do not differ significantly. In all four samples, microscopic images were similar to each other. The volume, size and distribution of the phases remain similar. Analysis of the chemical composition showed that all the samples fall within the compositions provided for the test alloy. Further to this the hardness of the samples, regardless of the number of remeltings did not show any significant fluctuations and remained within the error limit.After analyzing all the results, it can be concluded that the remeltings of the alloys should not have a significant impact on their properties. Secondarily melted alloys can be used for prosthetics works.
Go to article

Authors and Affiliations

B. Kacprzyk
G. Gumienny
T. Szymczak
L. Klimek

This page uses 'cookies'. Learn more