Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In recent years, a growing problem of water deficit has been observed, which is particularly acute for agriculture. To alleviate the effects of drought, hydrogel soil additives – superabsorbent polymers (SAPs) – can be helpful.
The primary objective of this article was to present a comparison of the advantages resulting from the application of synthetic or natural hydrogels in agriculture. The analysis of the subject was carried out based on 129 articles published between 1992 and 2020. In the article, the advantages of the application of hydrogel products in order to improve soil quality, and crop growth.
Both kinds of soil amendments (synthetic and natural) similarly improve the yield of crops. In the case of natural origin polymers, a lower cost of preparation and a shorter time of biodegradation are indicated as the main advantage in comparison to synthetic polymers, and greater security for the environment.
Go to article

Authors and Affiliations

Beata Grabowska-Polanowska
1
ORCID: ORCID
Tomasz Garbowski
1
ORCID: ORCID
Dominika Bar-Michalczyk
1
ORCID: ORCID
Agnieszka Kowalczyk
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The intensification of agricultural production is one of the factors determining economic development. Increasing mechanisation and use of fertilisers in agriculture lead to higher yields, but at the same time they can pose a threat to the environment. The overuse of chemical fertilisers contributes to increased concentration of nutrients in agricultural runoff. One of such areas is the Szreniawa River catchment, the study area located in the southern part of Poland. In this catchment, intensive mostly mechanical ploughing is applied in, for instance, vegetable production. The area has loess soils, which with intensive ploughing are susceptible to erosion. The study aims to determine changes in the quality of flowing waters against the background of agricultural production and land-use characteristics. Surface waters were classified as class II and occurred at all analysed points. The highest concentrations of N-NO3, N-NH4 and P-PO4 were found at a point in the middle of the catchment (lower part of research area). There, the lowest concentrations were recorded in 2018, which was related to the amount of precipitation during the growing season. On the other hand, the volume of plant and animal production closely correlated with the quality of surface water in the area. This was also confirmed by the land use structure. In conclusion, intensive agricultural production, mainly in terms of plough tillage causes significant hazards associated with soil erosion especially on agriculturally sensitive soils, although it provides good yields.
Go to article

Authors and Affiliations

Stanisław K. Lach
1
ORCID: ORCID
Agnieszka Kowalczyk
2
ORCID: ORCID
Marek T. Kopacz
1
ORCID: ORCID
Zbigniew Kowalewski
1
ORCID: ORCID
Mateusz Jakubiak
1
ORCID: ORCID
Robert. Mazur
1
ORCID: ORCID
Beata Grabowska-Polanowska
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Environmental Management and Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  2. Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
Download PDF Download RIS Download Bibtex

Abstract

Water erosion in mountainous areas is a major problem, especially on steep slopes exposed to intense precipitation. This paper presents the analysis of the topsoil loss using the SWAT (Soil and Water Assessment Tool) model. The SWAT model is a deterministic catchment model with a daily time step. It was designed to anticipate changes taking place in the catchment area, such as climate change and changes in land use and development, including the quantity and quality of water resources, soil erosion and agricultural production. In addition to hydrological and environmental aspects, the SWAT model is used to address socio-economic and demographic issues, such as water supply and food production. This program is integrated with QGIS software. The results were evaluated using the following statistical coefficients: determination (R2), Nash–Sutcliff model efficiency ( NS), and percentage deviation index ( PBIAS). An assessment of modelling results was made in terms of their variation according to different land cover scenarios. In the case of the scenario with no change in use, the average annual loss of topsoil (average upland sediment yield) was found to be 14.3 Mg∙ha –1. The maximum upland sediment yield was 94.6 Mg∙ha –1. On the other hand, there is an accumulation of soil material in the lower part of the catchment (in-stream sediment change), on average 13.27 Mg∙ha –1 per year.
Go to article

Authors and Affiliations

Agnieszka W. Kowalczyk
1
ORCID: ORCID
Beata Grabowska-Polanowska
1
ORCID: ORCID
Tomasz Garbowski
1
ORCID: ORCID
Marek Kopacz
2
ORCID: ORCID
Stanisław Lach
2
ORCID: ORCID
Robert Mazur
2
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  2. AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Environmental Management and Protection, Cracow, Poland

This page uses 'cookies'. Learn more