Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Snap-fit connections have been used for many years in various fields of technology and everyday objects. They often have complex shapes, which is allowed by the processing technology of the polymers from which they are made, but they are not designed to carry loads. Changing the material to a metal or fiber composite allows these types of joints to be used as replacements for rivets or screws, but there are problems with the closing technique – an increase in closing force due to the large Young’s modulus of these materials relative to polymers without reinforcement. One of the methods to solve this problem may be the use of a thermo-bimetallic effect consisting in heating both or one of the connection parts to the appropriate temperature. This kind of treatment results in deflection of the beam of the clip (Fig. 1), followed by assembly with zero force or less in relation to the case without heating.

The paper presents the results of numerical simulations for the connection in which the beam of the clip consisted of two materials: (1) a fiber composite designed to carry loads, (2) thin metal layer tied with the composite and designed to create a thermo-bimetallic effect. In the case of this solution, the main parameter is the difference in coefficients of linear thermal expansion of both materials.

The paper presents results for two cases of connection work: closing and opening. The calculations were carried out in the Abaqus/Standard solver using thermal-displacement steps.

Go to article

Authors and Affiliations

P. Golewski
T. Sadowski
Download PDF Download RIS Download Bibtex

Abstract

Aluminum profiles play an important role in civil engineering (facades, walls with windows) as well as in mechanical engineering (production lines, constructions of 3D printers and plotters). To ensure quick assembly, disassembly or changed the dimensions of constructions it is not possible to use such methods as welding, adhesive or riveting joints. The solution may be to use the so-called “popular lock”. It is a mechanism, the closure of which is caused by tightening of the conical screw, joining the “T” profile in the node. In order to properly design using the presented type of connection, it is necessary to know its strength and stiffness both in simple and complex loads states, also including imperfections. In the literature there is no information about the operation of the construction node with the so-called “popular lock”. The paper presents the results of experimental tests for connections subjected to uniaxial tensile test, paying special attention to the defects that may appear during the assembly. In the next step, a 3D solid connection model was created. Numerical simulations were performed in the Abaqus / Explicite program for both uniaxial tensile test and bending tests in two planes. Limit values of loads above which there is a plastic deformation of the material were determined. Determination of stiffness and strength of a single node allowed to make a simplified connector model. Using the numerical model, the analysis was performed taking into account the influence of imperfections on the work of the entire connection.

Go to article

Authors and Affiliations

P. Golewski
T. Sadowski
Download PDF Download RIS Download Bibtex

Abstract

To this day, most of the papers related to hybrid joints were focused on single and double lap joints in which shear deformation and degradation was the dominant phenomenon. However, in real constructions, complex state of loads can be created by: a) torsion with shear, b) bending with shear, c) torsion with tensile.

Analytical and numerical computation for simple mechanical joints is known, however, the introduction of an adhesive layer to this joint makes the load transferred both through: (1) the adhesive and (2) mechanical fasteners. There is also an interaction between the amount and stiffness of mechanical fasteners and the strength of the adhesive layer.

The paper presents the results of numerical calculations for the bending with shear type of load for the hybrid structural joint and corresponding simple joints by: (1) pure adhesion and (2) rivets with different quantity maintaining the same cross-sectional area. A total of 9 simulations were performed for: (1) 4 types of pure rivets connections, (2) pure adhesive joint and (3) 4 kinds of hybrid joints. The surface-based cohesive behavior was used for creation of the adhesive layer, whereas the rivets were modelled by connector type fasteners, which simplify complexity of the numerical model. The use of connectors allowed for effort assessment taking into account damage in both types of connections. Application of connector elements can be useful for larger structures modelling, e.g. aircraft fuselage, where the number of mechanical joints is significant and complex load conditions occur.

Go to article

Authors and Affiliations

T. Sadowski
M. Nowicki
P. Golewski

This page uses 'cookies'. Learn more