Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present an experimental setup developed for the calibration of dynamic force transducers which is based on the drop mass method. The traceability to SI units is realized through well-known mass characteristics and a reference shock accelerometer attached to that mass. Two approaches are proposed to analyse dynamic force employing a drop mass system. One approach depends on the inertial force of a falling mass while the other deals with the work-energy principle. Results of both approaches are then compared to the response of a statically calibrated force transducer. It is shown that the obtained maximum relative deviations between the response of force transducer and the first approach results are 1% while those of the second approach are 2%.
Go to article

Bibliography

[1] Fujii, Y., Isobe, D., Saito, S., Fujimoto, H., & Miki, Y. (2000). A method for determining the impact force in crash testing. Mechanical Systems and Signal Processing, 14(6), 959–965. https://doi.org/10.1006/mssp.1999.1272
[2] Fujii, Y. (2003). A method for calibrating force transducers against oscillation force. Measurement Science and Technology, 14(8), 1259–1264. https://doi.org/10.1088/0957-0233/14/8/310
[3] Hjelmgren, J. (2002). Dynamic Measurement of Force – A Literature Survey (SP Report 2002:34). SP Swedish National Testing and Research Institute SP Measurement Technology.
[4] Jun, Y., Yiqing, C., Xuan, H., & Xiao, Y. (2017). Impulse force calibration with dropped weight and laser vibrometer. IMEKO 23rd TC3, 13th TC5 and 4th TC22 International Conference, Finland, 19. https://www.imeko.org/publications/tc3-2017/IMEKO-TC3-2017-030.pdf
[5] Kobusch, M., Link, A., Buss, A., & Bruns, T. (2007). Comparison of shock and sine force calibration methods. IMEKO 20th TC3, 3rd TC16 and 1st TC22 International Conference, Maxico. https://www.imeko.org/publications/tc3-2007/IMEKO-TC3-2007-007u.pdf
[6] Satria, E., Takita, A., Nasbey, H., Prayogi, I. A., Hendro, H., Djamal, M., & Fujii, Y. (2018). New technique for dynamic calibration of a force transducer using a drop ball tester. Measurement Science and Technology, 29(12). https://doi.org/10.1088/1361-6501/aaeb71
[7] Schlegel, C., Kieckenap, G., Glöckner, B., Buß, A., & Kumme, R. (2012). Traceable periodic force calibration. Metrologia, 49(3), 224–235. https://doi.org/10.1088/0026-1394/49/3/224
[8] Sivaselvan, M. V., Reinhorn, A. M., Shao, X., & Weinreber, S. (2008). Dynamic force control with hydraulic actuators using added compliance and displacement compensation. Earthquake Engineering and Structural Dynamics, 37(15), 1785–1800. https://doi.org/10.1002/eqe.837
[9] Stanford, A. L., & Tanner, J. M. (1985). Work, Power, and Energy. In Physics for Students of Science and Engineering (pp. 109–144). Elsevier Inc. https://doi.org/10.1016/b978-0-12-663380-1.50008-2
[10] Vlajic, N., & Chijioke, A. (2017). Traceable calibration and demonstration of a portable dynamic force transfer standard. Metrologia, 54(4), S83–S98. https://doi.org/10.1088/1681-7575/aa75da
[11] Yang, Y., Zhao, Y., & Kang, D. (2016). Integration on acceleration signals by adjusting with envelopes. Journal of Measurements in Engineering, 4(2), 117–121. https://www.jvejournals.com/ article/16965/pdf
[12] Zhang, L., & Kumme, R. (2003). Investigation of interferometric methods for dynamic force measurement. In XVII IMEKO World Congress, Metrology in the 3rd Millennium, Croatia, 315–318.
[13] Zhang, L.,Wang, Y., & Zhang, L. (2010). Investigation of calibrating force transducer using sinusoidal force. AIP Conference Proceedings, 1253, 395–401. https://doi.org/10.1063/1.3455481
Go to article

Authors and Affiliations

Shaker A. Gelany
1
Gouda M. Mahmoud
1

  1. National Institute of Standards (NIS), Tersa St, El-Haram, PO Box 136, Code 12211, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The Kibble balance experiment is used to redefine the kilogram as a unit of mass based on the Planck constant. To demonstrate and understand the basic principle of the Kibble balance, the National Institute of Standards (NIS)-Egypt has constructed a prototype Kibble balance that can measure gram-level masses with 0.01% relative uncertainty. Through the construction of this prototype, the challenges can be studied and addressed to overcome the weaknesses of NIS’s prototype. This study presents the design and construction of the prototype Kibble balance. It also focuses on the design and performance of the magnetic system, which is a crucial element of the Kibble balance. Analytical modeling and finite element analysis were used to evaluate and improve the magnet system. Several other aspects were also discussed, including the yoke’s material and enhancing the magnetic profile within the air gap of the magnet system. Over a vertical distance of 30 mm inside the air gap, the magnetic flux density was found to be 0.3 T, and the uniformity was found to be 8 x 10 -5.
Go to article

Authors and Affiliations

Sayed Emira
1
E.R. Shaaban
2
M.M. Rashad
3
Shaker A. Gelany
1

  1. National Institute of Standards (NIS), Tersa St, El-Haram, PO Box 136, Code 12211, Giza, Egypt
  2. Department of Physics, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
  3. Central Metallurgical Research and Development Institute (CMRDI), P.O. BOX. 87 Helwan, Egypt 11421

This page uses 'cookies'. Learn more