Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The embryology of three polar flowering plants of the family Caryophyllaceae was studied using the methods and techniques of the light, normal and fluorescence microscopes, and the electron microscopes, scanning and transmission. The analyzed species were Colobanthus quitensis of West Antarctic (King George Island, South Shetlands Islands) as well as Cerastium alpinum and Silene involucrata of the Arctic (Spitsbergen, Svalbard). In all evaluated species, flowering responses were adapted to the short Arctic and Australian summer, and adaptations to autogamy and anemogamy were also observed. The microsporangia of the analyzed plants produced small numbers of microspore mother cells that were differentiated into a dozen or dozens of trinucleate pollen grains. The majority of mature pollen grains remained inside microsporangia and germinated in the thecae. The monosporous Polygonum type (the most common type in angiosperms) of embryo sac development was observed in the studied species. The egg apparatus had an egg cell and two synergids with typical polarization. A well-developed filiform apparatus was differentiated in the micropylar end of the synergids. In mature diaspores of the analyzed plants of the family Caryophyllaceae, a large and peripherally located embryo was, in most part, adjacent to perisperm cells filled with reserve substances, whereas the radicle was surrounded by micropylar endosperm composed of a single layer of cells with thick, intensely stained cytoplasm, organelles and reserve substances. The testae of the analyzed plants were characterized by species-specific primary and secondary sculpture, and they contained large amounts of osmophilic material with varied density. Seeds of C. quitensis, C. alpinum and S. involucrata are very small, light and compact shaped.
Go to article

Authors and Affiliations

Wioleta Kellmann-Sopyła
Irena Giełwanowska
Justyna Koc
Ryszard J. Górecki
Marcin Domaciuk
Download PDF Download RIS Download Bibtex

Abstract

This study investigated leaf mesophyll cells of Caryophyllaceae plants growing in polar regions – Cerastium alpinum and Silene involucrata from the Hornsund region of Spitsbergen island (Svalbard Archipelago, Arctic), and Colobanthus quitensis from the Admiralty Bay region on King George Island (South Shetland Islands, West Antarctic). Ultra− structural changes were analyzed in mesophyll protoplasts of plants growing in natural Arctic and Antarctic habitats and plants grown in a greenhouse, including plants exposed to short−term cold stress under se mi−controlled conditions. Cell organelles of plants growing in natural polar habitats and greenhouse−grown plants were characterized by significant morphological plasticity. Chloroplasts of plants studied in this work formed variously shaped protrusions and invaginations that visibly increased the contact area between adjacent cell compartments and reduced the distance between organelles. S. involucrata plants grown under greenhouse conditions, tested by us in this wor k, were characterized by highly dynamic cell nuclei with single or multiple invaginations of the nuclear membrane and the presence of channels and cisternae filled with cytoplasm and organelles. Crystalline inclusion proteins were observed in the cell nuclei of C. quitensis between nuclear membranes and in the direct proximity of heterochromatin. Our study revealed significant conformational dynamics of organelles, manifested by variations in the optical density of matrices, membranes and envelopes, in particular in C. quitensis , which could suggest that the analyzed Caryophyllaceae taxa are well adapted to severe climate and changing conditions in polar regions.
Go to article

Authors and Affiliations

Irena Giełwanowska
Michał Węgrzyn
Maja Lisowska
Marta Pastorczyk
Ryszard J. Górecki

This page uses 'cookies'. Learn more