Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Reactive distillation (RD) has already demonstrated its potential to significantly increase reactant conversion and the purity of the target product. Our work focuses on the application of RD to reaction systems that feature more than one main reaction. In such multiple-reaction systems, the application of RD would enhance not only the reactant conversion but also the selectivity of the target product. The potential of RD to improve the product selectivity of multiple-reaction systems has not yet been fully exploited because of a shortage of available comprehensive experimental and theoretical studies. In the present article, we want to theoretically identify the full potential of RD technology in multiple-reaction systems by performing a detailed optimisation study. An evolutionary algorithm was applied and the obtained results were compared with those of a conventional stirred tank reactor to quantify the potential of RD to improve the target product selectivity of multiple-reaction systems. The consecutive transesterification of dimethyl carbonate with ethanol to form ethyl methyl carbonate and diethyl carbonate was used as a case study.

Go to article

Authors and Affiliations

Tobias Keller
Bjoern Dreisewerd
Andrzej Górak
Download PDF Download RIS Download Bibtex

Abstract

Foam fractionation process for concentration of laccases from two Basidiomycete strains under different process conditions was investigated. Culture supernatants of Cerrena unicolor and Pleurotus sapidus containing active laccase were used with and without surfactant additives. Two surfactants: cationic cetrimonium bromide (CTAB) and non-ionic Polysorbate 80 were applied in the range from 0.2 mM to 1.5 mM. The pH levels ranging from 3 to 10 were examined with particular attention to pH=4, which is close to the pI of the enzymes. Results show that the source of the enzyme is significant in terms of partitioning efficiency in a foam fractionation process. Laccase from Cerrena unicolor showed the best activity partitioning coefficients between foamate and retentate of almost 200 with yields reaching 50% for pH 7.5 and concentration of CTAB cCTAB = 0.5 mM, whereas laccase from Pleurotus sapidus showed partitioning coefficients of up to 8 with 25% yield for pH 4 and cCTAB = 0.5 mM.

Go to article

Authors and Affiliations

Michał Blatkiewicz
Stanisław Ledakowicz
Anna Antecka
Andrzej Górak
Download PDF Download RIS Download Bibtex

Abstract

Culture supernatant containing laccase produced by Cerrena unicolor strain was used to examine laccase partitioning between phases in an aqueous two-phase system. The investigated system consisted of polyethylene glycol 3000 and sodium phosphate buffer adjusted to pH = 7. Influence of several parameters on partitioning was measured, including phase forming components’ concentrations, tie line lengths, phase volume ratio, supernatant dilution, process temperature and halogen salt supplementation. Partitioning coefficients up to 78 in the bottom phase were achieved with yields of over 90%. Tie line length and phase volume ratio had significant effect on enzyme partitioning.

Go to article

Authors and Affiliations

Michał Blatkiewicz
Stanisław Ledakowicz
Axel Prinz
Andrzej Górak
Download PDF Download RIS Download Bibtex

Abstract

Despite its unique properties (biocompatibility and nontoxicity), chitin itself has limited application. Chitin is completely insoluble in most organic or inorganic solvents what can be beneficial when chitin is investigated as a support for chromatography or enzyme immobilization. These applications require the particles to have an extensive outer surface with a large number of reactive ligands. The increase in specific surface area of chitin particles can be performed by dissolution in ionic liquid and precipitation with water. To increase the number of reactive ligands (amine groups), deacetylation of the surface of chitin particles is necessary. The deacetylation process can be carried out by an enzymatic process with the enzyme, chitin deacetylase. In our investigation, 21 ionic liquids were used for chitin particle structure modification followed by enzymatic deacetylation. Results proved positive effect of modifications with ionic liquid on enzymatic deacetylation of the chitin surface with chitin deacetylase. For 12 samples the deacetylation gave an increase in number of active ligands in comparison to natural chitin. The best results were observed for [Bmim][Br], [Emim][Cl] and [MPpip][Ac]. That could be correlated with an increase in outer surface area by increasing porosity of particles or by structural changes in chitin particles.
Go to article

Authors and Affiliations

Małgorzata M. Jaworska
1
ORCID: ORCID
Dorota Biniaś
2
ORCID: ORCID
Katarzyna Dąbkowska-Susfał
1
ORCID: ORCID
Andrzej Górak
3
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
  2. University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Department of Environmental Protection and Engineering, Willowa 2, 43-309 Bielsko-Biała, 9 Poland
  3. Faculty of Process Engineering and Environmental Protection, Lodz Technical University, ul. Wólczanska 213, 93-005 Lodz, Poland

This page uses 'cookies'. Learn more