Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to analyse the effect of anthropogenic activities on the spatial distribution of total nitrogen (TN) and total phosphate (TP) in Lake Maninjau, Indonesia, during the dry season. Sampling was carried out at ten observation locations representative for various activities around the lake. Cluster analysis and ANOVA were used to classify pollutant sources and observe differences between TN and TP at each site. Concentrations of TN and TP are categorised as oligotrophic-eutrophic. The ANOVA showed spatially that some sampling locations, such as the Tanjung Sani River, floating net cages, and hydropower areas have different TN concentrations. At the same time, TP levels were consistently significantly different across sampling sites. ANOVA and cluster analysis confirmed that floating net cages were the first cluster and the primary contributor to TN and TP. The second and third clusters come from anthropogenic activities around the lake, such as agriculture, settlement, and livestock. The fourth cluster with the lowest TN and TP is the river that receives the anthropogenic activity load but has a high flow velocity. The cluster change analysis needs to be conducted when there are future changes in the composition of floating net cages, agriculture, and settlements.
Go to article

Authors and Affiliations

Puti S. Komala
1
ORCID: ORCID
Zulkarnaini Zulkarnaini
1
Roselyn I. Kurniati
2
Mhd Fauzi
3
ORCID: ORCID

  1. Universitas Andalas, Department of Environmental Engineering, 25163, Padang, Indonesia
  2. Universitas Universal, Department of Environmental Engineering, 29432, Batam, Indonesia
  3. Doctoral Student of Environmental Engineering, Institut Teknologi Bandung, 40132, Bandung, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Domestic wastewater in Gampong Garot, Aceh Besar Regency, Aceh Province, Indonesia is directly discharged to the Daroy River without any treatment process. Domestic wastewater from Gampong Garot has been one of the contributors to microplastics contamination in the Daroy River. The microplastics (MPs) contained in domestic wastewater might come from used soaps and detergent products, as well as the scouring of clothes during washing. Thus, this study aims to investigate the abundance of MPs in domestic wastewater in Gampong Garot. The sampling points were determined based on purposive sampling, with samples taken at the end of the main pipe that directly leads to the Daroy River. Organics in domestic wastewater were removed using 30% H 2O 2 liquid through a digestion process at a temperature of 75°C. MPs characteristics such as size, shape, and colour were visually analysed using a light binocular microscope at 100× magnification, while the polymer type was analysed using Fourier transform infrared (FTIR) analysis. The concentration of MPs in domestic wastewater in Gampong Garot was 30.238 ±1.228 particles∙(100 cm) –3 sample. The most common sizes of MPs were found to be in the range of 1,001–5,000 μm, while the dominant colour and shape were transparent and fibre-like. Polyester (PES) was the most detected type of MPs. These findings highlight the need for wastewater treatment before discharge into aquatic bodies.
Go to article

Authors and Affiliations

Mhd Fauzi
1
ORCID: ORCID
Prayatni Soewondo
2
Yeggi Darnas
3
Marisa Handajani
2
Teddy Tedjakusuma
2
Muhammad Nizar
4
Cut R. Muna
3
Ansiha Nur
5

  1. Institut Teknologi Bandung, Faculty of Civil and Environmental Engineering, Doctoral Student of Environmental Engineering, 10 Ganesa St, 40132, Bandung, Indonesia
  2. Institut Teknologi Bandung, Faculty of Civil and Environmental Engineering, Department of Environmental Engineering, Water and Wastewater Engineering Research Group, Bandung, Indonesia
  3. Universitas Islam Negeri Ar-Raniry Banda Aceh, Faculty of Science and Technology, Environmental Engineering Study Program, Banda Aceh, Indonesia
  4. Universitas Serambi Mekkah, Faculty of Engineering, Environmental Engineering Study Program, Banda Aceh, Indonesia
  5. Universitas Andalas, Faculty of Engineering, Department of Environmental Engineering, Padang, Indonesia

This page uses 'cookies'. Learn more