Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Metallothioneins are low-molecular-weight proteins capable of covalently binding heavy metal ions due to the presence of many cysteine residues in their sequences. We analyzed the predicted amino acid sequences of 19 metallothionein (7 from Arabidopsis thaliana and 12 from Oryza sativa) and their promoter sequences in silico in order to determine the potential regulatory cis-elements present in the promoters of metallothionein genes, from which it is possible to determine the putative functions of these genes. The PlantCARE and PLACE databases provided information about the putative regulatory elements in the metallothionein promoters. Metal response element sequences were found in the promoters of eleven O. sativa and two Arabidopsis metallothionein genes. Copper response elements were identified in both model plants, usually in many copies, particularly in O. sativa. Both the high cysteine content and the presence of metal response motifs in the promoters support the suggestion that metallothioneins play a key role in metal detoxification. The most common putative element in the analyzed promoters was CIRCADIAN, which was present in five A. thaliana and eight O. sativa sequences. The methyl jasmonate response sequence, root-specific expression element and drought response element were found only in O. sativa metallothioneins. Light and low temperature response elements, biotic and abiotic stress elements, an abscisic acid-responsive element and an ethylene-responsive element occur in selected metallothionein promoters of both species. A few promoters have putative organ- and cell-specific regulatory elements. The presence of many different motifs in the promoters of the Arabidopsis and O. sativa genes implies that metallothioneins are general stress response proteins with many important functions in plants, including regulation of their normal development and adaptation to changing environmental conditions.

Go to article

Authors and Affiliations

Grażyna Dąbrowska
Download PDF Download RIS Download Bibtex

Abstract

Arbuscular mycorrhizal fungi are the most widespread root fungal symbionts, forming associations with the vast majority of plant species. Ectomycorrhizal development alters gene expression in plant symbionts. In this work we examined the effect of arbuscular mycorrhizal fungi spores on the growth and development of Brassica and on the expression of BnMT2 in winter rape. In a pot experiment, rape seedlings growing on different types of sterile and nonsterile soils were inoculated simultaneously with mycorrhizal fungi spores of Acaulospora longula,Glomus geosporum, Glomus mosseae and Scutellospora calospora. As compared with control plants growing in the absence of spores, ten-week-old seedlings of Brassica napus L. in sterile soil inoculated with arbuscular spores had longer shoots and higher fresh biomass of above-ground plant parts. In other types of substrates enriched with mycorrhizal fungi spores, the plants were smaller than non-inoculated plants. The presence of AMF spores stimulated the elongation growth of hypocotyls in both analyzed substrates. BnMT2 expression was highest in plants growing on the sterile substrate. Generally, the presence of mycorrhizal fungi spores appeared to have an adverse effect on the growth of rape plants.

Go to article

Authors and Affiliations

Grażyna Dąbrowska
Katarzyna Hrynkiewicz
Alina Trejgell

This page uses 'cookies'. Learn more