Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Background: Cardiovascular diseases are the first cause of death globally. Hypercholester-olemia is the most important factor responsible for atherosclerotic plaque formation and increasing cardiovascular risk. Reduction of LDL-C level is the most relevant goal for reduction of cardiovascular risk.
Aims: Real life adherence to guidelines concerning statin therapy in one center study population. Methods: We analyzed data collected in the Department of Internal Diseases from September 2019 to February 2020, obtained from 238 patients hospitalized in this time period. We assessed application of the new 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias in daily clinical practice and compared effectiveness of LLT according to 2016 and 2019 guidelines.
Results: Only 1 in 5 patients with dyslipideamia achieve the 2019 ESC/EAS guideline-recommended levels of LDL-C with relation to their TCVR. We noticed that 20 of patients who did not achieve proper 2019 LDL level, meet the therapy targets established in year 2016. We observed that higher patient TCVR resulted in better compliance with guidelines and ordination of proper LLT. Most patients were on monotherapy with statins.
Conclusions: It could be beneficial to start treatment with double or even triple therapy especially in group with the highest LDL-C levels.
Go to article

Bibliography

1. Cardiovascular diseases. Available from: https://www.who.int/health-topics/cardiovascular-diseases/ #tab=tab_1
2. Poland | Institute for Health Metrics and Evaluation [Internet]. Available from: http://www.healthdata.org/poland
3. Ference B.A., Ginsberg H.N., Graham I., et al.: Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017; 38 (32): 2459–2472.
4. Navarese E.P., Robinson J.G., Kowalewski M., et al.: Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering a systematic review and meta-analysis. JAMA. 2018; 319 (15): 1566–1579.
5. Zdrojewski T., Solnica B., Cybulska B., et al.: Prevalence of lipid abnormalities in Poland. the NATPOL 2011 survey. Kardiol Pol. 2016; 74 (3): 213–223.
6. Pająk A., Szafraniec K., Polak M., et al.: Changes in the prevalence, treatment, and control of hypercholesterolemia and other dyslipidemias over 10 years in Poland: The WOBASZ study. Pol Arch Med Wewn. 2016; 126 (9): 642–652.
7. Mach F., Baigent C., Catapano A.L., et al.: 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Vol. 41, European Heart Journal. 2020. p. 111–188.
8. Catapano A.L., Graham I., De Backer G., et al.: 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016; 37: 2999–3058.
9. Baigent C., Blackwell L., Emberson J., et al.: Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010; 376 (9753): 1670–1681.
10. Silverman M.G., Ference B.A., Im K., et al.: Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and meta-analysis. JAMA. 2016; 316 (12): 1289–1297.
11. Giugliano R.P., Pedersen T.R., Park J.G., et al.: Clinical efficacy and safety of achieving very low LDL- cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet. 2017 Oct 28; 390 (10106): 1962–1971.
12. Soran H., Dent R., Durrington P.: Evidence-based goals in LDL-C reduction. Clin Res Cardiol. 2017; 106 (4): 237–248.
13. Masana L., Girona J., Ibarretxe D., et al.: Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels — The zero-LDL hypothesis. J Clin Lipidol. 2018; 12 (2): 292–299. e3.
14. Katzmann J.L., Sorio-Vilela F., Dornstauder E., et al.: Non-statin lipid-lowering therapy over time in very-high-risk patients: effectiveness of fixed-dose statin / ezetimibe compared to separate pill combination on LDL-C. Clin Res Cardiol. 2020; (0123456789).
15. Guglielmi V., Bellia A., Pecchioli S., et al.: Effectiveness of adherence to lipid lowering therapy on LDL-cholesterol in patients with very high cardiovascular risk: A real-world evidence study in primary care. Atherosclerosis. 2017; 263: 36–41.
16. Kaddoura R., Orabi B., Salam A.M.: Efficacy and safety of PCSK9 monoclonal antibodies: an evidence-based review and update. J Drug Assess. 2020; 9 (1): 129–144.
17. Saborowski M., Dölle M., Manns M.P., et al.: Lipid-lowering therapy with pcsk9-inhibitors in the management of cardiovascular high-risk patients: Effectiveness, therapy adherence and safety in a real world cohort. Cardiol J. 2018; 25 (1): 32–41.
18. Novel Drug Approvals for 2015 | FDA [Internet]. Available from: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-ap-provals-2015
19. Zodda D., Giammona R., Schifilliti S.: Treatment Strategy for Dyslipidemia in Cardiovascular Disease Prevention: Focus on Old and New Drugs. Pharmacy. 2018; 6 (1): 10.
20. Szymański F.M., Barylski M., Cybulska B., et al.: Recommendation for the management of dyslipidemia in Poland — Third declaration of sopot. Interdisciplinary expert position statement endorsed by the Polish cardiac society working group on cardiovascular pharmacotherapy. Cardiol J. 2018; 25 (6): 655–665.
21. Koskinas K.C., Windecker S., Pedrazzini G., et al.: Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients With Acute Coronary Syndromes (EVOPACS). J Am Coll Cardiol. 2019 Nov 19; 74 (20): 2452–62.
22. Sabatine M.S., Giugliano R.P., Keech A.C., et al.: Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017; 376 (18): 1713–1722.
23. Murphy S.A., Pedersen T.R., Gaciong Z.A., et al.: Effect of the PCSK9 Inhibitor Evolocumab on Total Cardiovascular Events in Patients with Cardiovascular Disease: A Prespecified Analysis from the FOURIER Trial. JAMA Cardiol. 2019; 4 (7): 613–619.
24. Bittner V.A., Szarek M., Aylward P.E., et al.: Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome. J Am Coll Cardiol. 2020; 75 (2): 133–144.
25. Schwartz G.G., Steg P.G., Szarek M., et al.: Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018; 379 (22): 2097–2107.
26. Raal F.J., Kallend D., Ray K.K., et al.: Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020 Apr 16; 382 (16): 1520–1530.
27. Ferri N., Corsini A.: Clinical Pharmacology of Statins: an Update. Curr Atheroscler Rep. 2020 Jun 3; 22 (7): 26.
28. Ballantyne C.M., Banach M., Mancini G.B.J., et al.: Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study. Atherosclerosis. 2018; 277: 195–203.
29. Banach M., Duell P.B., Gotto A.M., et al.: Association of Bempedoic Acid Administration with Atherogenic Lipid Levels in Phase 3 Randomized Clinical Trials of Patients with Hypercholester-olemia. JAMA Cardiol. 2020; 1–11.
30. Kam N., Perera K., Zomer E., et al.: Inclisiran as Adjunct Lipid-Lowering Therapy for Patients with Cardiovascular Disease: A Cost-Effectiveness Analysis. Pharmacoeconomics. 2020; 38 (9): 1007–1020.
Go to article

Authors and Affiliations

Patrycja Cecha
1
Anna Chromik
1
Ilona Piotrowska
1
Michał Zabojszcz
1
Magdalena Dolecka-Ślusarczyk
1
Zbigniew Siudak
1

  1. Collegium Medicum, Jan Kochanowski University, Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

Voice acoustic analysis can be a valuable and objective tool supporting the diagnosis of many neurodegenerative diseases, especially in times of distant medical examination during the pandemic. The article compares the application of selected signal processing methods and machine learning algorithms for the taxonomy of acquired speech signals representing the vowel a with prolonged phonation in patients with Parkinson’s disease and healthy subjects. The study was conducted using three different feature engineering techniques for the generation of speech signal features as well as the deep learning approach based on the processing of images involving spectrograms of different time and frequency resolutions. The research utilized real recordings acquired in the Department of Neurology at the Medical University of Warsaw, Poland. The discriminatory ability of feature vectors was evaluated using the SVM technique. The spectrograms were processed by the popular AlexNet convolutional neural network adopted to the binary classification task according to the strategy of transfer learning. The results of numerical experiments have shown different efficiencies of the examined approaches; however, the sensitivity of the best test based on the selected features proposed with respect to biological grounds of voice articulation reached the value of 97% with the specificity no worse than 93%. The results could be further slightly improved thanks to the combination of the selected deep learning and feature engineering algorithms in one stacked ensemble model.
Go to article

Bibliography

  1.  Y.D. Kumar and A.M. Prasad, “MEMS accelerometer system for tremor analysis”, Int. J Adv. Eng. Global Technol. 2(5), 685‒693 (2014).
  2.  P. Pierleoni, “A Smart Inertial System for 24h Monitoring and Classification of Tremor and Freezing of Gait in Parkinson’s Disease”, IEEE Sens. J. 19(23), 11612‒11623 (2019).
  3.  W. Pawlukowska, K. Honczarenko, and M. Gołąb-Janowska, “Nature of speech disorders in Parkinson disease”, Pol. Neurol. Neurosurg. 47(3), 263‒269 (2013), [in Polish].
  4.  S.A. Factor, Parkinson’s Disease: Diagnosis & Clinical Management, 2nd Edition, 2002.
  5.  R. Chiaramonte and M. Bonfiglio, “Acoustic analysis of voice in Parkinson’s disease: a systematic review of voice disability and meta- analysis of studies”, Rev. Neurologia 70(11), 393‒405 (2020).
  6.  Jiri Mekyska, et al., “Robust and complex approach of pathological speech signal analysis”, Neurocomputing 167, 94‒111 (2015).
  7.  B. Erdogdu Sakar, G. Serbes, C. Sakar, “Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson’s disease”, PLoS One 12, 8 (2017)
  8.  L. Berus, S. Klancnik, M. Brezocnik, and M. Ficko, “Classifying Parkinson’s Disease Based on Acoustic Measures Using Artificial Neural Networks”, Sensors (Basel) 19(1), 16 (2019).
  9.  L. Jeancolas et al., “Automatic detection of early stages of Parkinson’s disease through acoustic voice analysis with mel-frequency cepstral coefficients”, 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 2017, pp. 1‒6.
  10.  D.A. Rahn, M. Chou, J.J. Jiang, and Y.Zhang, “Phonatory impairment in Parkinson’s disease: evidence from nonlinear dynamic analysis and perturbation analysis”, J. Voice 21, 64‒71 (2007).
  11.  J. Kurek, B. Świderski, S. Osowski, M. Kruk, and W. Barhoumi, “Deep learning versus classical neural approach to mammogram recognition”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 831‒840 (2018).
  12.  S. Sivaranjini and C.M. Sujatha, “Deep learning based diagnosis of Parkinson’s disease using convolutional neural network”, Multimed. Tools Appl. 79, 15467–15479 (2020).
  13.  M. Wodziński, A. Skalski, D. Hemmerling, J.R. Orozco-Arroyave, and E. Noth, “Deep Learning Approach to Parkinson’s Disease Detection Using Voice Recordings and Convolutional Neural Network Dedicated to Image Classification” 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 717‒720.
  14.  J. Chmielińska, K. Białek, A. Potulska-Chromik, J. Jakubowski, E. Majda-Zdancewicz, M. Nojszewska, A. Kostera-Pruszczyk and A. Dobrowolski, “Multimodal data acquisition set for objective assessment of Parkinson’s disease”, Proc. SPIE 11442, Radioelectronic Systems Conference 2019, 114420F (2020).
  15.  M. Kuhn, K. Johnson, Applied predictive modeling, New York: Springer, 2013.
  16.  P. Liang, C. Deng, J. Wu, Z. Yang, and J. Zhu, “Intelligent Fault Diagnosis of Rolling Element Bearing Based on Convolutional Neural Network and Frequency Spectrograms” 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), San Francisco, USA, 2019, pp. 1‒5.
  17.  M.S. Wibawa, I.M.D. Maysanjaya, N.K.D.P. Novianti, and P.N. Crisnapati, “Abnormal Heart Rhythm Detection Based on Spectrogram of Heart Sound using Convolutional Neural Network”, 2018 6th International Conference on Cyber and IT Service Management (CITSM), Parapat, Indonesia, 2019, pp. 1‒4.
  18.  M. Curilem, J.P. Canário, L. Franco, and R.A. Rios, “Using CNN To Classify Spectrograms of Seismic Events From Llaima Volcano (Chile)”, 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brasil, 2018, pp. 1‒8.
  19.  D. Rethage, J. Pons and X. Serra, “A Wavenet for Speech Denoising”, 2018 IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018, pp. 5069‒5073.
  20.  A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classifi-cation with deep convolutional neural networks”, Neural Infor-mation Processing Systems, 2012.
  21.  J. Jakubowski and J. Chmielińska, “Detection of driver fatigue symptoms using transfer learning”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 869‒874 (2018).
  22.  A. Benba, A. Jilbab, and A. Hammouch, “Voice analysis for detecting persons with Parkinson’s disease using MFCC and VQ”, International conference on circuits, systems and signal processing (ICCSSP’14), Russia, 2014.
  23.  E. Niebudek-Bogusz, J. Grygiel, P. Strumiłło, and M. Śliwińska-Kowalska, “Nonlinear acoustic analysis in the evaluation of occupational voice disorders”, Occupational Medicine, 64(1), 29–35 (2013), [in Polish].
  24.  E. Majda and A.P. Dobrowolski, “Modeling and optimization of the feature generator for speaker recognition systems”, Electr. Rev. 88(12A), 131‒136 (2012).
  25.  Y. Maryn, N. Roy, M. De Bodt, P.B. van Cauwenberge, P. Corthals, “Acoustic measurement of overall voice quality: a meta-analysis”, J. Acoust. Soc. Am. 126(5), 2619‒2634 (2009), doi: 10.1121/1.3224706.
  26.  E. Niebudek-Bogusz, J. Grygiel, P. Strumiłło, and M. Śliwińska-Kowalska, “Mel cepstral analysis of voice in patients with vocal nodules”, Otorhinolaryngology 10(4), 176‒181 (2011), [in Polish].
  27.  A. Krysiak, “Language, speech and communication disorders in Parkinson’s disease”, Neuropsychiatr. Neuropsychol. 6(1), 36–42 (2011), [in Polish].
  28.  F. Alías, J.C. Socoró, and X. Sevillano, “A Review of Physical and Perceptual Feature Extraction Techniques for Speech, Music and Environmental Sounds”, Appl. Sci. 6(5), 143 (2016).
  29.  X. Valero and F. Alias, “Gammatone Cepstral Coefficients: Biologically InspiredFeatures for Non-Speech Audio Classification”, IEEE Trans. Multimedia 14(6), 1684‒1689 (2012).
  30.  S. Malcolm, “An Efficient Implementation of the Patterson-Holdworth Auditory Filter Bank”, 35. Apple Computer Technical Report, 1993.
  31.  D.M. Agrawal, H.B. Sailor, M.H. Soni, and H.A. Patil, “Novel TEO-based gammatone features for environmental sound classification”, 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 2017, pp. 1809‒1813.
  32.  S. Russel and P. Norvig, Artificial intelligence – a modern approach, Upper Saddle River: Pearson Education, 2010.
  33.  A. Chatzimparmpas, R.M. Martins, K. Kucher, and A. Kerren, “StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics”, IEEE Transactions on Visualization and Computer Graphics 27(2), 1547‒1557 (2021), doi: 10.1109/TVCG.2020.3030352.
Go to article

Authors and Affiliations

Ewelina Majda-Zdancewicz
1
ORCID: ORCID
Anna Potulska-Chromik
2
ORCID: ORCID
Jacek Jakubowski
1
ORCID: ORCID
Monika Nojszewska
2
ORCID: ORCID
Anna Kostera-Pruszczyk
2
ORCID: ORCID

  1. Faculty of Electronics, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  2. Department of Neurology, Medical University of Warsaw, ul. Banacha 1a, 02-097 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Finger tapping is one of the standard tests for Parkinson's disease diagnosis performed to assess the motor function of patients' upper limbs. In clinical practice, the assessment of the patient's ability to perform the test is carried out visually and largely depends on the experience of clinicians. This article presents the results of research devoted to the objectification of this test. The methodology was based on the proposed measurement method consisting in frame processing of the video stream recorded during the test to determine the time series representing the distance between the index finger and the thumb. Analysis of the resulting signals was carried out in order to determine the characteristic features that were then used in the process of distinguishing patients with Parkinson's disease from healthy cases using methods of machine learning. The research was conducted with the participation of 21 patients with Parkinson's disease and 21 healthy subjects. The results indicate that it is possible to obtain the sensitivity and specificity of the proposed method at the level of approx. 80 %. However, the patients were in the so-called ON phase when symptoms are reduced due to medication, which was a much greater challenge compared to analyzing signals with clearly visible symptoms as reported in related works.
Go to article

Authors and Affiliations

Jacek Jakubowski
1
ORCID: ORCID
Anna Potulska-Chromik
2
ORCID: ORCID
Jolanta Chmielińska
1
ORCID: ORCID
Monika Nojszewska
2
ORCID: ORCID
Anna Kostera-Pruszczyk
2
ORCID: ORCID

  1. Faculty of Electronics, Military University of Technology, Warsaw, Poland
  2. Department of Neurology, Medical University of Warsaw, Warsaw, Poland

This page uses 'cookies'. Learn more