Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Several conjunctive use approaches can be distinguished. Drought cycling of groundwater (GW) usage and storage relies on more surface water (SW) during wetter years and delivers more water from GW during drought years. This method has the benefit of temporal changes in water availability. Additionally, it is usually desirable in areas with internal variability of SW where surface storage of wet-year surpluses is uneconomical, suffer excessive evaporative losses, or cause unacceptable environmental disruption. In previous studies, the purpose of operating the drought cycling was to reduce operating costs. In these studies, the objective function of the proposed model was to minimise the present value cost derived from the system design and operation to satisfy a predefined demand during a finite planning and operation horizon. However, it is important to consider other objectives in operating water resources systems, including minimising water shortages accurately. Hence, in this study, two scenarios were focused on: 1) mi-nimising water shortagages, 2) minimising operational costs. Pareto solutions are then presented with the objectives of minimising costs and water deficit. In this study, the weighting method has been used to extract Pareto options. The results show that reducing costs from 234 to 100 mln USD will increase water shortage from 9.3 to 11.3 mln m3.
Go to article

Bibliography

AFSHAR A., KHOSRAVI M., MOLAJOU A. 2021. Assessing adaptability of cyclic and non-cyclic approach to conjunctive use of ground-water and surface water for sustainable management plans under climate change. Water Resources Management. Vol. 35 p. 3463– 3479. DOI 10.1007/s11269-021-02887-3.

AFSHAR A., KHOSRAVI M., OSTADRAHIMI L., AFSHAR A. 2020. Reliability- based multi-objective optimum design of nonlinear conjunctive use problem; cyclic storage system approach. Journal of Hydrology. Vol. 588, 125109. DOI 10.1016/j.jhydrol.2020.125109.

AFSHAR A., OSTADRAHIMI L., ARDESHIR A., ALIMOHAMMADI S. 2008a. Lumped approach to a multi-period–multi-reservoir cyclic storage system optimization. Water Resources Management. Vol. 22(12) p. 1741–1760. DOI 10.1007/s11269-008-9251-y.

ALIMOHAMMADI S., AFSHAR A., MARIÑO M.A. 2009. Cyclic storage systems optimization: semidistributed parameter approach. Journal – American Water Works Association. Vol. 101(2) p. 90–103. DOI 10.1002/j.1551-8833.2009.tb09842.x.

BORTOLINI L., MAUCIERI C., BORIN M. 2018. A tool for the evaluation of irrigation water quality in the arid and semi-arid regions. Agronomy. Vol. 8(2), 23. DOI 10.3390/agronomy8020023.

BURT O. 1964. The economics of conjunctive use of ground and surface water. Hilgardia. Vol. 36(2) p. 31–111. DOI 10.3733/hilg.v36n02p031.

COE J.J. 1990. Conjunctive use – Advantages, constraints, and examples. Journal of Irrigation and Drainage Engineering. Vol. 116(3) p. 427–443. DOI 10.1061/(ASCE)0733-9437(1990)116:3(427).

DARKO R.O., YUAN S., HONG L., LIU J., YAN H. 2016. Irrigation, a productive tool for food security – A review. Acta Agriculturae Scandinavica. Section B – Soil & Plant Science. Vol. 66(3) p. 191– 206. DOI 10.1080/09064710.2015.1093654.

DINKA M.O. 2019. Groundwater property and composition variability under long-term irrigated area of Wonji Plain, Ethiopia. Journal of Water and Land Development. No. 41(1) p. 37–46. DOI 10.2478/jwld-2019-0025.

FOSTER S., PULIDO-BOSCH A., VALLEJOS Á., MOLINA L., LLOP A., MACDONALD A.M. 2018. Impact of irrigated agriculture on groundwater-recharge salinity: A major sustainability concern in semi-arid regions. Hydrogeology Journal. Vol. 26(8) p. 2781– 2791. DOI 10.1007/s10040-018-1830-2.

GUDE V.G., MAGANTI A. 2021. Desalination of deep groundwater for freshwater supplies. Chapt. 42. In: Global groundwater. Source, scarcity, sustainability, security, and solutions. Elsevier p. 577– 583. DOI 10.1016/B978-0-12-818172-0.00042-6.

HAROU J.J., LUND J.R. 2008. Ending groundwater overdraft in hydrologic-economic systems. Hydrogeology Journal. Vol. 16 (6), 1039. DOI 10.1007/s10040-008-0300-7.

HURD B. H., COONROD J. 2008. Climate change and its implications for New Mexico’s water resources and economic opportunities [online]. NM State University, Agricultural Experiment Station, Cooperative Extension Service, College of Agriculture and Home Economics. [Access 11.02.2021]. Available at: https://aces.nmsu. edu/pubs/research/economics/TR45/welcome.html

KESUMA S.I., MARYUNIANTA Y., MUDA I. 2018. Evaluation of irrigation system to support implementation of food security policy. International Journal of Civil Engineering and Technology. Vol. 9(9) p. 600–614.

KHOSRAVI M., AFSHAR A., MOLAJOU A. 2020. Reliability-based design of conjunctive use water resources systems: Comparison of cyclic and non-cyclic approaches. Journal of Water and Wastewater. Vol. 31(7) p. 90–101. DOI 10.22093/wwj.2020.201234.2924. [In Persian].

KRYSANOVA V., BRONSTERT A., MÜLLER-WOHLFEIL D.I. 1999. Modelling river discharge for large drainage basins: from lumped to distributed approach. Hydrological Sciences Journal. Vol. 44(2) p. 313–331. DOI 10.1080/02626669909492224.

LI P., QIAN H., WU J. 2018. Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North- West China. International Journal of Water Resources Development. Vol. 34(3) p. 337–353. DOI 10.1080/07900627.2018.1443059.

LOUCKS D.P. 1997. Quantifying trends in system sustainability. Hydrological Sciences Journal. Vol. 42(4) p. 513–530. DOI 10.1080/02626669709492051.

MALEK A., KAHOUL M., BOUGUERRA H. 2019. Groundwater’s physico-chemical and bacteriological assessment: Case study of well water in the region of Sedrata, North-East of Algeria. Journal of Water and Land Development. No. 41(1) p. 91–100. DOI 10.2478/jwld-2019-0032.

MARTÍNEZ-SANTOS P., ANDREU J.M. 2010. Lumped and distributed approaches to model natural recharge in semiarid karst aquifers. Journal of Hydrology. Vol. 388(3–4) p. 389–398.

MOLAJOU A., AFSHAR A., KHOSRAVI M., SOLEIMANIAN E., VAHABZADEH M., VARIANI H.A. 2021a. A new paradigm of water, food, and energy nexus. Environmental Science and Pollution Research. DOI 10.1007/s11356-021-13034-1.

MOLAJOU A., NOURANI V., AFSHAR A., KHOSRAVI M., BRYSIEWICZ A. 2021b. Optimal design and feature selection by genetic algorithm for emotional artificial neural network (EANN) in rainfall-runoff modeling. Water Resources Management. Vol. 35 p. 2369–2384. DOI 10.1007/s11269-021-02818-2.

NAYAK M.A., HERMAN J.D., STEINSCHNEIDER S. 2018. Balancing flood risk and water supply in California: Policy search integrating short- term forecast ensembles with conjunctive use. Water Resources Research. Vol. 54(10) p. 7557–7576. DOI 10.1029/2018WR023177.

PERALTA R.C., AZARMNIA H., TAKAHASHI S. 1991. Embedding and response matrix techniques for maximizing steady-state ground- water extraction: Computational comparison. Groundwater. Vol. 29(3) p. 357–364. DOI 10.1111/j.1745-6584.1991.tb00526.x.

PHILBRICK C.R., KITANIDIS P.K. 1998. Optimal conjunctive-use opera-tions and plans. Water Resources Research. Vol. 34(5) p. 1307– 1316. DOI 10.1029/98WR00258.

PSILOVIKOS A. 2006. Response matrix minimization used in ground-water management with mathematical programming: A case study in a transboundary aquifer in northern Greece. Water Resources Management. Vol. 20(2) p. 277–290.

RICHTER B.D., THOMAS G.A. 2007. Restoring environmental flows by modifying dam operations [online]. Ecology and Society. Vol. 12(1), 12. [Access 10.03.2020]. Available at: http://www.ecolo-gyandsociety.org/vol12/iss1/art12/

SALAZAR J.Z., REED P.M., HERMAN J.D., GIULIANI M., CASTELLETTI A. 2016. A diagnostic assessment of evolutionary algorithms for multi- objective surface water reservoir control. Advances in Water Resources. Vol. 92 p. 172–185. DOI 10.1016/j.advwatres.2016.04.006.

SCHILLING O.S., COOK P.G., BRUNNER P. 2019. Beyond classical observations in hydrogeology: The advantages of including exchange flux, temperature, tracer concentration, residence time, and soil moisture observations in groundwater model calibration. Reviews of Geophysics. Vol. 57(1) p. 146–182. DOI 10.1029/2018RG000619.

SEO S.B., MAHINTHAKUMAR G., SANKARASUBRAMANIAN A., KUMAR M. 2018. Conjunctive management of surface water and groundwater resources under drought conditions using a fully coupled hydrological model. Journal of Water Resources Planning and Management. Vol. 144(9), 04018060. DOI 10.1061/(ASCE)WR.1943-5452.0000978.

VANSTEENKISTE T., TAVAKOLI M., VAN STEENBERGEN N., DE SMEDT F., BATELAAN O., PEREIRA F., WILLEMS P. 2014. Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. Journal of Hydrology. Vol. 511 p. 335–349. DOI 10.1016/j.jhydrol.2014.01.050.

ZEINALI M., AZARI A., HEIDARI M.M. 2020. Multiobjective optimization for water resource management in low-flow areas based on a coupled surface water–groundwater model. Journal of Water Resources Planning and Management. Vol. 146(5), 04020020. DOI 10.1061/(ASCE)WR.1943-5452.0001189.
Go to article

Authors and Affiliations

Tzu-Chia Chen
1
ORCID: ORCID
Tsung-Shun Hsieh
2
Rustem A. Shichiyakh
3
ORCID: ORCID

  1. Dhurakij Pundit University, Bangkok, Thailand
  2. Krirk University, Thanon Ram Intra, Khwaeng Anusawari, Khet Bang Khen, Krung Thep Maha Nakhon 10220, Thailand
  3. Kuban State Agrarian University named after I.T. Trubilin, Department of Management, Krasnodar, Russian Federation
Download PDF Download RIS Download Bibtex

Abstract

In the discussion of water quality control, the first and most effective parameter that affects other variables and water quality parameters is the temperature situation and water temperature parameters that control many ecological and chemical processes in reservoirs. Additionally, one of the most important quality parameters studied in the quality of water resources of dams and reservoirs is the study of water quality in terms of salinity. The salinity of the reservoirs is primarily due to the rivers leading into them. The control of error in the reservoirs is always considered because the outlet water of the reservoirs, depending on the type of consumption, should always be standard in terms of salinity. Therefore, in this study, using the available statistics, the Ce-Qual-W2 two-dimensional model was used to simulate the heat and salinity layering of the Latyan Dam reservoir. The results showed that with warming and shifting from spring to late summer, the slope of temperature changes at depth increases and thermal layering intensifies, and a severe temperature difference occurs at depth. The results of sensitivity analysis also showed that by decreasing the wind shear coefficient (WSC), the reservoir water temperature increases, so that by increasing or decreasing the value of this coefficient by 0.4, the average water temperature by 0.56°C changes inversely, and the results also show that by increasing or decreasing the value of the shade coefficient by 0.85, the average water temperature changes by about 7.62°C, directly.
Go to article

Bibliography

AFSHAR A., KHOSRAVI M., MOLAJOU A. 2021. Assessing adaptability of cyclic and non-cyclic approach to conjunctive use of ground-water and surface water for sustainable management plans under climate change. Water Resources Management. Vol. 35 p. 3463– 3479. DOI 10.1007/s11269-021-02887-3.

AZADI F., ASHOFTEH P.S., LOÁICIGA H.A. 2019. Reservoir water-quality projections under climate-change conditions. Water Resources Management. No. 33(1) p. 401–421. DOI 10.1007/s11269-018-2109-z.

CAISSIE D. 2006. The thermal regime of rivers: a review. Freshwater Biology. Vol. 51(8) p. 1389–1406. DOI 10.1111/j.1365-2427.2006.01597.x.

CHENG Y., VOISIN N., YEARSLEY J.R., NIJSSEN B. 2020. Reservoirs modify river thermal regime sensitivity to climate change: a case study in the southeastern United States. Water Resources Research. Vol. 56(6), e2019WR025784. DOI 10.1029/2019WR025784.

DEBELE B., SRINIVASAN R., PARLANGE J.Y. 2008. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling & Assessment. Vol. 13(1) p. 135–153. DOI 10.1007/s10666-006-9075-1.

DELIMAN P.N., GERALD J.A. 2002. Application of the two-dimensional hydrothermal and water quality model, CE-QUAL-W2, to the Chesapeake Bay–Conowingo Reservoir. Lake and Reservoir Management. Vol. 18(1) p. 10–19. DOI 10.1080/07438140209353925.

DOÑA C., SÁNCHEZ J.M., CASELLES V., DOMÍNGUEZ J.A., CAMACHO A. 2014. Empirical relationships for monitoring water quality of lakes and reservoirs through multispectral images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 7(5) p. 1632–1641. DOI 10.1109/JSTARS.2014.2301295.

HAMILTON D.P., SCHLADOW S.G. 1997. Prediction of water quality in lakes and reservoirs. Part I – Model description. Ecological Modelling. Vol. 96(1–3) p. 91–110. DOI 10.1016/S0304-3800(96)00062-2.

HENRY R. 1993. Thermal regime and stability of Jurumirim reservoir (Paranapanema River, Sao Paulo, Brazil). Internationale Revue der gesamten Hydrobiologie und Hydrographie. Vol. 78(4) p. 501–511. DOI 10.1002/IROH.19930780407.

HUA R., ZHANG Y. 2017. Assessment of water quality improvements using the hydrodynamic simulation approach in regulated cascade reservoirs: A case study of drinking water sources of Shenzhen, China. Water. Vol. 9(11) p. 825–839. DOI 10.3390/w9110825.

KHODABANDEH F., DARMIAN M.D., MOGHADDAM M.A., MONFARED S.A.H. 2021. Reservoir quality management with CE-QUAL-W2/ANN surrogate model and PSO algorithm (case study: Pishin Dam, Iran). Arabian Journal of Geosciences. Vol. 14(5) p. 1–18. DOI 10.1007/s12517-021-06735-x.

LITVINOV A.S., ZAKONNOVA A.V. 2012. Thermal regime in the Rybinsk Reservoir under global warming. Russian Meteorology and Hydrology. Vol. 37(9) p. 640–644. DOI 10.3103/S1068373912090087.

MELO D.S., GONTIJO E. S., FRASCARELI D., SIMONETTI V.C., MACHADO L.S., BARTH J.A., ... FRIESE K. 2019. Self-organizing maps for evaluation of biogeochemical processes and temporal variations in water quality of subtropical reservoirs. Water Resources Research. Vol. 55(12) p. 10268–10281. DOI 10.1029/2019WR025991.

MOHSENI-BANDPEI A., MOTESADDI S., ESLAMIZADEH M., RAFIEE M., NASSERI M., NAMIN M.M., ... RIAHI S.M. 2018. Water quality assessment of the most important dam (Latyan dam) in Tehran, Iran. Environmental Science and Pollution Research. Vol. 25(29) p. 29227–29239. DOI 10.1007/s11356-018-2865-6.

MOLAJOU A., AFSHAR A., KHOSRAVI M., SOLEIMANIAN E., VAHABZADEH M., VARIANI H.A. 2021. A new paradigm of water, food, and energy nexus. Environmental Science and Pollution Research. DOI 10.1007/s11356-021-13034-1.

NOURANI V., ROUZEGARI N., MOLAJOU A., BAGHANAM A.H. 2020. An integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenarios. Journal of Hydrology. Vol. 587, 125018. DOI 10.1016/j.jhydrol.2020.125018.

OSTFELD A., SALOMONS S. 2005. A hybrid genetic – instance based learning algorithm for CE-QUAL-W2 calibration. Journal of Hydrology. Vol. 310(1–4) p. 122–142. DOI 10.1016/j.jhy-drol.2004.12.004.

SCHLADOW S.G., HAMILTON D.P. 1997. Prediction of water quality in lakes and reservoirs: Part II – Model calibration, sensitivity analysis and application. Ecological Modelling. Vol. 96(1–3) p. 111–123. DOI 10.1016/S0304-3800(96)00063-4.

SKOWRON R., PIASECKI A. 2016. Dynamics of the daily course of water temperature in Polish lakes. Journal of Water and Land Development. No. 31 p. 149–156. DOI 10.1515/jwld-2016-0046.

WANG S., QIAN X., HAN B.P., LUO L.C., HAMILTON D.P. 2012. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Research. Vol. 46(8) p. 2591–2604. DOI 10.1016/j.watres.2012.02.014.

WANG X., ZHOU Y., ZHAO Z., WANG L., XU J., YU J. 2019. A novel water quality mechanism modeling and eutrophication risk assessment method of lakes and reservoirs. Nonlinear Dynamics. Vol. 96(2) p. 1037–1053. DOI 10.1007/s11071-019-04837-6.

WU Z., WANG X., CHEN Y., CAI Y., DENG J. 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment. Vol. 612 p. 914–922. DOI 10.1016/j.scitotenv.2017.08.293.

YANG Y., DENG Y., TUO Y., LI J., HE T., CHEN M. 2020. Study of the thermal regime of a reservoir on the Qinghai-Tibetan Plateau, China. PloS ONE. Vol. 15(12), e0243198. DOI 10.1371/journal.pone.0243198.

ZEINIVAND H., DE SMEDT F. 2009. Hydrological modeling of snow accumulation and melting on river basin scale. Water Resources Management. Vol. 23(11) p. 2271–2287. DOI 10.1007/s11269-008-9381-2.

ZHI W., FENG D., TSAI W.P., STERLE G., HARPOLD A., SHEN C., LI L. 2021. From hydrometeorology to river water quality: Can a deep learning model predict dissolved oxygen at the continental scale? Environmental Science & Technology. Vol. 55(4) p. 2357–2368. DOI 10.1021/acs.est.0c06783.
Go to article

Authors and Affiliations

Tzu-Chia Chen
1
ORCID: ORCID
Shu-Yan Yu
1
Chang-Ming Wang
1
Sen Xie
1
Hanif Barazandeh
2

  1. International College, Krirk University, Bangkok, 3 Ram Inthra Rd, Khwaeng Anusawari, Khet Bang Khen, Krung Thep Maha Nakhon 10220, Thailand
  2. Ferdowsi University of Mashhad, Iran
Download PDF Download RIS Download Bibtex

Abstract

With the emergence of climate change and the increasing human intervention in the global climate, floods have affected different parts of the world. In practice, floods are the most terrible natural disaster in the world, both in terms of casualties and financial losses. To reduce the adverse effects of this phenomenon, it is necessary to use structural and non-structural methods of flood risk management. One of the structural methods of flood control is to allocate a certain part of reservoir dams to flood control. In order to safely exit the flood from the dam reservoir, the spillway structure should be used. One of the important issues in designing a spillway structure is reducing its construction costs. In order to safely exit the flood with a specified return period from the dam reservoir, as the length of the spillway decreases, the height of the water blade on the spillway increases. In other words, decreasing the spillway length increases the height of the dam and its construction and design costs. In this study, the design and comparison of the performance of two glory spillways and lateral spillways have been considered. The results showed that for a given length for the drain edge of both types of spillways, the height of the water blade on the glory spillway is always higher than the lateral spillway. For example, when a 10,000-year-old flood occurs, it is about 8 m.
Go to article

Authors and Affiliations

I Made Sukerta
1
ORCID: ORCID
Tzu-Chia Chen
2
ORCID: ORCID
Jonni Mardizal
3
Mahmood Salih Salih
4
ORCID: ORCID
Isnaini Zulkarnain
5
ORCID: ORCID
Md Zahidul Islam
6
ORCID: ORCID
Mohammed Sabeeh Majeed
7
ORCID: ORCID
Ahmed Baseem Mahdi
8
ORCID: ORCID
Dhameer Ali Mutlak
9
ORCID: ORCID
Surendar Aravindhan
10
ORCID: ORCID

  1. Universitas Mahasaraswati Denpasar, Agriculture and Business Faculty, JL. Kamboja 11A, Denpasar, Bali, 80361, Indonesia
  2. Ming Chi University of Technology, Department of Industrial Engineering and Management, New Taipei City, Taiwan
  3. Universitas Negeri Padang, Faculty of Engineering, Padang, Indonesia
  4. University of Anbar, Upper Euphrates Basin Developing Center, Ramadi, Iraq
  5. Universitas Muhammadiyah Kalimantan Timur, Faculty of Science and Technology, Department of Civil Engineering, Samarinda, Indonesia
  6. International Islamic University Malaysia, Ahmad Ibrahim Kulliyyah of Laws, Civil Law Department, Kuala Lumpur, Malaysia
  7. Al-Manara College for Medical Sciences, Maysan, Iraq
  8. Al-Mustaqbal University College, Anesthesia Techniques Department, Babylon, Iraq
  9. Al-Nisour University College, Radiology and Sonar Techniques Department, Baghdad, Iraq
  10. Saveetha University, Department of Pharmocology, Chennai, India

This page uses 'cookies'. Learn more