Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Fly ash which has been separated from the flue gas stream as a result of fossil fuels combustion constitutes a huge amount of waste generated worldwide. Due to environmental problems, many directions of their rational use have been developed. Various attempts to convert fly ash into sorption materials, mainly synthetic zeolites, are conducted successfully. In this paper, an attempt was made to convert fly ash from lignite combustion from one of the Polish power plants, using alkaline hydrothermal synthesis. The primary phases in the fly ash were: quartz, gehlenite, mullite, hematite, feldspar, lime, anhydrite, occasionally grains of ZnO phase and pyrrhotite, glass and unburned fuel grains. As a result of hydrothermal synthesis a material containing new phases – pitiglianoite and tobermorite was obtained. Among the primary ash constituents, only gehlenite with an unburned organic substance, on which tobermorite with crystallized pitiglianoite was present. As a result of detailed testing of products after synthesis, it was found that among the tested grains:

• two populations can be distinguished – grains containing MgO and Fe2O3 as well as grains

containing Fe2O3 or MgO or containing none of these components,

• the main quantitative component was pitiglianoite,

• pitiglianoite was present in larger amounts in grains containing Fe2O3 or MgO or in the absence of both components than in grains in which Fe2O3 and MgO were found.

The results of the study indicate that in post-synthesis products, the contribution of components were as follows: pitiglianoite – 39.5% mas., tobermorite – 54% mas., gehlenite – 3% mas. and organic substance – 3.5% mas.

Go to article

Authors and Affiliations

Barbara Białecka
ORCID: ORCID
Zdzisław Adamczyk
ORCID: ORCID
Magdalena Cempa
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of hydrothermal zeolitization of fly ash from hard coal combustion in one of the Polish power plants. The synthesis was carried out using various NaOH fly ash mass ratio (3.0, 4.0 and 6.0) and the effect of NaOH concentration in the activating solution on composition of synthesized sample was tested. The process was carried out under the following permanent conditions temperature: 90°C, time – 16 hours, water solution of NaOH (L)/fly ash (g) ratio – 0.025. In the studied fly ash the dominant chemical components were SiO2 and Al2O3, while the main phase components were mullite, quartz and hematite, and a significant share of amorphous substance (glass and unburnt organic substance). After hydrothermal synthesis, the presence of unreacted fly ash phases was found in the products, as well as new phases, the quality and quantity of which depend on the NaOH to fly ash mass ratio used for synthesis:

 for ratio 3.0 – Na-LSX type zeolite and hielscherite,

 for ratio 4.0 – Na-LSX type zeolite, hielscherite and hydrosodalite,

 for ratio 6.0 – hydrosodalite and hielscherite.

The grains in all products of synthesis are poly-mineral. However, it was found that the new phases, overgrowing the unreacted phase components of fly ash, crystallize in a certain order. Hielscherite is the first crystallizing phase, on which the Na-LSX type zeolite crystallizes then, and the whole is covered by hydrosodalite. In the products of synthesis, the share of sodium-containing phases (the Na-LSX type zeolite and hydrosodalite) increases with the increasing concentration of NaOH in the solution used for the process.

Go to article

Authors and Affiliations

Zdzisław Adamczyk
ORCID: ORCID
Magdalena Cempa
ORCID: ORCID
Barbara Białecka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the feasibility of utilizing sodium alginate biopolymer as animmobilization carrier for laccase in the removal of indigo carmine (IC), an anionic dye. The main goal of this work was to optimize the decolourization process by selecting the appropriate immobilized enzyme dose per 1 mg of dye, as well as the process temperature. The effective immobilization of laccase using sodium alginate as a carrier was confirmed by Raman spectroscopy. An analysis of the size and geometric parameters of the alginate beads was also carried out. Tests of IC decolourization using alginate-laccase beads were conducted. Applying the most effective dose of the enzyme (320 mg of enzyme/1 mg of IC) made it possible to remove 92.5% of the dye over 40 days. The optimal temperature for the IC decolourization process, using laccase immobilized on sodium alginate, was established at 30-40ºC. The obtained results indicate that laccase from Trametes versicolor immobilized on sodium alginate was capable of decolourizing the tested dye primarily based on mechanism of biocatalysis.
Go to article

Bibliography

  1. Achieng, G.O., Kowenje, Ch.O., Lalah, J.O. & Ojwach S.O. (2019). Preparation, characterization of fish scales biochar and their applications in the removal of anionic indigo carmine dye from aqueous solutions, Water Science & Technology, 80, 11, pp. 2218-2231. DOI:10.2166/wst.2020.040.
  2. Ahlawat, A., Jaswal, A.S. & Mishra, S. (2022). Proposed pathway of degradation of indigo carmine and its co-metabolism by white-rot fungus Cyathus bulleri, International Biodeterioration & Biodegradation, 172, 3, 105424. DOI:10.1016/j.ibiod.2022.105424.
  3. Almulaiky, Y.Q. & Al Harbi, S.A. (2022). Preparation of a calcium alginate coated polypyrrole/silver nanocomposite for site specific immobilization of polygalacturonase with high reusability and enhanced stability, Catalysis Letters, 152, pp. 28-42. DOI:10.1007/s10562-021-03631-7.
  4. Alvarado-Ramírez, L., Rostro-Alanis, M., Rodríguez-Rodríguez, J., Castillo-Zacarías, C., Sosa-Hernández, J.E., Barceló, D., Iqbal, H.M.N. & Parra-Saldívar R. (2021). Exploring current tendencies in techniques and materials for immobilization of laccases – A review, International Journal of Biological Macromolecules, 181, pp. 683–696. DOI:10.1016/j.ijbiomac.2021.03.175.
  5. Bhowmik, S., Chakraborty, V. & Das, P. (2021). Batch adsorption of indigo carmine on activated carbon prepared from sawdust: a comparative study and optimization of operating conditions using Response Surface Methodology, Results in Surfaces and Interfaces, 3, 100011. DOI:10.1016/j.rsurfi.2021.100011.
  6. Bilal, M., Rasheed, T., Nabeel, F. & Iqbal, H.M.N. (2019). Hazardous contaminants in the environment and their laccase-assisted degradation – A review, Journal of Environmental Management, 234, pp. 253-264. DOI:10.1016/j.jenvman.2019.01.001.
  7. Ching, S.H., Bansal, N. & Bhandari, B. (2017). Alginate gel particles–A review of production techniques and physical properties, Critical Reviews in Food Science and Nutrition, 57, pp. 1133–1152. DOI:10.1080/10408398.2014.965773.
  8. Daâssi, D., Mechichi, T., Nasri, M. & Rodriguez-Couto, S. (2013). Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi, Journal of Environmental Management, 129, pp. 324-332. DOI:10.1016/j.jenvman.2013.07.026.
  9. Deska, M. & Kończak, B. (2020). Operational stability of laccases under immobilization conditions, Przemysł Chemiczny, 99, 3, pp. 472-476. DOI:10.15199/62.2020.3.22. (in Polish)
  10. Deska, M. & Kończak, B. (2022a). Support materials for laccase immobilization for decolourization processes, Przemysł Chemiczny, 101, 2, pp. 135-139. DOI:10.15199/62.2022.2.9. (in Polish)
  11. Deska, M. & Kończak, B. (2022b). Laccase Immobilization on Biopolymer Carriers – Preliminary Studies, Journal of Ecological Engineering, 23, 3, pp. 235–249. DOI:10.12911/22998993/146611.
  12. Deska, M. & Kończak, B., (2019). Immobilized fungal laccase as "green catalyst" for the decolourization process – State of the art, Process Biochemistry, 84, pp. 112-123. DOI:10.1016/j.procbio.2019.05.024.
  13. Deska, M. & Zawadzki, P. (2021). Novel methods of removing synthetic dyes from industrial wastewater, Przemysł Chemiczny, 100, 7, pp. 664-667. DOI:10.15199/62.2021.7.5 (in Polish).
  14. Hevira, L., Rahmayeni, Z., Ighalo, J.O. & Zein R. (2020). Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell, Journal of Environmental Chemical Engineering, 8, 104290. DOI:10.1016/j.jece.2020.104290.
  15. Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M. & Pandit, A.B. (2016). A critical review on textile wastewater treatments: Possible approaches, Journal of Environmental Management, 182, pp. 351–366. DOI:10.1016/j.jenvman.2016.07.090.
  16. Hurtado, A., Aljabali, A.A.A., Mishra, V.; Tambuwala, M.M. & Serrano-Aroca, Á. (2022). Alginate: Enhancement Strategies for Advanced Applications, International Journal of Molecular Sciences, 23, 4486, DOI:10.3390/ijms23094486.
  17. Kandelbauer, A., Kessler, W. & Kessler, R.W. (2008). Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation, Analytical and Bioanalytical Chemistry, 390, 5, pp. 1303–1315. DOI:10.1007/s00216-007-1791-0.
  18. Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R. & Bharagava, R.N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, Journal of Environmental Chemical Engineering, 9, 2, 105012. DOI:10.1016/j.jece.2020.105012.
  19. Klis, M., Maicka, E., Michota, A., Bukowska, J., Sek, S., Rogalski, J. & Bilewicz R. (2007). Electroreduction of laccase covalently bound to organothiol monolayers on gold electrodes, Electrochimica Acta, 52, 18, pp. 5591–5598. DOI:10.1016/j.electacta.2007.02.008.
  20. Krzyczmonik, P., Klisowska, M., Leniart, A., Ranoszek-Soliwoda, K., Surmacki, J., Beton-Mysur, K. & Brożek-Płuska. B. (2023). The Composite Material of (PEDOT-Polystyrene Sulfonate)/Chitosan-AuNPS-Glutaraldehyde/as the Base to a Sensor with Laccase for the Determination of Polyphenols, Materials, 16, 14, pp. 5113. DOI:10.3390/ma16145113.
  21. Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials, Archives of Environmental Protection, 49, 1, pp. 47-56, DOI:10.24425/aep.2023.144736.
  22. Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48, 1, pp. 75-82, DOI:10.24425/aep.2022.140546.
  23. Lassouane, F., Aït-Amar, H., Amrani, S. & Rodriguez-Couto, S. (2019). A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions, Bioresource Technology, 271, pp. 360-367. DOI:10.1016/j.biortech.2018.09.129.
  24. Leonties, A.R., Răducan, A., Culiță, D.C., Alexandrescu, E., Moroșan, A., Mihaiescu, D.E. & Aricov, L. (2022). Laccase immobilized on chitosan-polyacrylic acid microspheres as highly efficient biocatalyst for naphthol green B and indigo carmine degradation, Chemical Engineering Journal, 439, 135654. DOI:10.1016/j.cej.2022.135654.
  25. Mohan, Ch., Yadav, S., Uniyal, V., Takaeva, N. & Kumari, N. (2022). Interaction of Indigo carmine with naturally occurring clay minerals: An approach for the synthesis of nanopigments, Materials Today: Proceedings, 69, 2, pp. 82-86. DOI:10.1016/j.matpr.2022.08.081.
  26. Neha, A., Vijendra, S.S., Amel, G., Mohd, A.H., Brijesh, P., Amrita, S., Anupama, S., Virendra, K.Y., Krishna, K.Y., Chaigoo, L., Wonjae, L., Sumate, Ch. & Byong-Hun, J. (2022). Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach - A Review, Water, 14, 24, 4068. DOI:10.3390/w14244068.
  27. Niladevi, K. & Prema, P. (2007). Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor, World Journal of Microbiology and Biotechnology, 24, pp. 1215-1222. DOI:10.1007/s11274-007-9598-x.
  28. Olajuyigbe, F.M., Adetuyi, O.Y. & Fatokun, C.O. (2018). Characterization of free and immobilized laccase from Cyberlindera fabianii and application in degradation of bisfenol A, International Journal of Biological Macromolecules, 125, pp. 856-864. DOI:10.1016/j.ijbiomac.2018.12.106.
  29. Rane, A. & Joshi, S.J. (2021). Biodecolorization and Biodegradation of Dyes: A Review, The Open Biotechnology Journal, 15, Suppl-1, M4, pp. 97-108. DOI:10.2174/1874070702115010097.
  30. Rodriguez-Couto, S. & Herrera, J.L.T. (2006). Industrial and biotechnological applications of laccases: a review, Biotechnology Advances, 24, 5, pp. 500-513. DOI:10.1016/j.biotechadv.2006.04.003.
  31. Saoudi, O. & Ghaouar, N. (2019). Biocatylytic characterization of free and immobilized laccase from Trametes versicolor in its activation zone, International Journal of Biological Macromolecules, 128, pp.681-691. DOI:10.1016/j.ijbiomac.2019.01.199.
  32. Shokri, Z., Seidi, F., Karami, S., Li, Ch., Saeb, M.R. & Xiao, H. (2021). Laccase immobilization onto natural polysaccharides for biosensing and biodegradation, Carbohydrate Polymers, 262, 117963. DOI:10.1016/j.carbpol.2021.117963.
  33. Teerapatsakul, Ch., Parra, R., Keshavarz, T. & Chitradon, L. (2017). Repeated batch for dye degradation in an airlift bioreactor by laccase entrapped in copper alginate, International Biodeterioration & Biodegradation, 120, pp. 52-57. DOI:10.1016/j.ibiod.2017.02.001.
  34. Tyagi, N., Gambhir, K., Pandey, R., Gangenahalli, G. & Verma, Y.K. (2021) Minimizing the negative charge of Alginate facilitates the delivery of negatively charged molecules inside cells, Journal of Polymer Research, 29, 1. DOI:10.1007/s10965-021-02813-6
  35. Vautier, M., Guillard, C. & Herrmann, J.M. (2001). Photocatalytic degradation of dyes in water: Case study of indigo and of indigo carmine, Journal of Catalysis, 201, pp. 46-59. DOI:10.1006/jcat.2001.3232.
  36. Wang, J.; Lu, L. & Feng, F. (2017). Improving the Indigo Carmine Decolorization Ability of a Bacillus amyloliquefaciens Laccase by Site-Directed Mutagenesis, Catalysts, 7, 275. DOI:10.3390/catal7090275.
  37. Zdarta, J., Meyer, A.S., Jesionowski, T. & Pinelo, M. (2018). Developments in support materials for immobilization of oxidoreductases: A comprehensive review, Advances in Colloid and Interface Science, 258, pp.1-20. DOI:10.1016/j.cis.2018.07.004.
  38. Zein, R., Hevira, L., Zilfa, Rahmayeni, Fauzia, S. & Ighalo J.O. (2022). The Improvement of Indigo Carmine Dye Adsorption by Terminalia catappa Shell Modified with Broiler Egg White, Biomass Conversion and Biorefinery, 13, pp. 13795-13812. DOI:10.1007/s13399-021-02290-3.
  39. Zhou, W., Zhang, W. & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review, Chemical Engineering Journal, 403, 126272. DOI:10.1016/j.cej.2020.126272.
Go to article

Authors and Affiliations

Małgorzata Białowąs
1
ORCID: ORCID
Beata Kończak
1
Stanisław Chałupnik
1
Joanna Kalka
2
Magdalena Cempa
1
ORCID: ORCID

  1. Central Mining Institute – National Research Institute, Katowice, Poland
  2. Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering,The Silesian University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a cost-effectiveness analysis and a cost-benefit analysis for the production of X-type zeolites from fly ash.
Positive results of the laboratory tests on the quality of zeolites derived from fly ash initiated a cost analysis on the production of this materials on an industrial scale. The cost-effectiveness analysis was conducted using the dynamic generation cost indicator (DGC). The calculated DGC expresses the technical manufacturing cost of 1 Mg of synthetic zeolites. Whereas the cost-benefit analysis (CBA) was completed using the economic net present value (ENP V) and the economic internal rate of return (EIRR ) indicators.
The calculated unit technical cost of producing 1 Mg of zeolites using an installation consisting of five reactors with a capacity of 25 m3 each is 211 EUR and is lower than the current market price of this product, including transportation costs. This proves the financial viability of the investment. The calculations of the economic efficiency of the installation (CBA method) show that it is fully economically viable to operate and use the products from a social point of view.
Go to article

Authors and Affiliations

Barbara Białecka
1
ORCID: ORCID
Magdalena Cempa
1
ORCID: ORCID
Zdzisław Adamczyk
2
ORCID: ORCID
Henryk Świnder
1
ORCID: ORCID
Piotr Krawczyk
1
ORCID: ORCID

  1. GIG Research Institute, Katowice, Poland
  2. Silesian University of Technology, Gliwice, Poland

This page uses 'cookies'. Learn more