Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Glass production has a great industrial importance and is associated with many technological challenges. Control related problems concern especially the last part of the process, so called glass conditioning. Molten glass is gradually cooled down in a long ceramic channels called forehearths during glass conditioning. The glass temperature in each zone of the forehearth should be precisely adjusted according to the assumed profile. Due to cross-couplings and unmeasured disturbances, traditional control systems based on PID controllers, often do not ensure sufficient control quality. This problem is the main motivation for the research presented in the paper. A Model Predictive Control algorithm is proposed for the analysed process. It is assumed the dynamic model for each zone of the forehearth is identified on-line with the Modulating Functions Method. These continuous-time linear models are subsequently used for two purposes: for the predictive controller tuning, measurable disturbances compensation and for a static set point optimisation. Proposed approach was tested using Partial Differential Equation model to simulate two adjacent zones of the forehearth. The experimental results proved that it can be successfully applied for the aforementioned model.
Go to article

Authors and Affiliations

Michał Drapała
1
Witold Byrski
1

  1. Department of Automatic Control and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an iterative identification method dedicated for industrial processes. The method consists of two steps. In the first step, a MISO system is identified with the Modulating Functions Method to obtain sub-models with a common denominator. In the second step, the obtained subsystems are re-identified. This procedure enables to obtain the set of models with different denominators of the transfer functions. The algorithmwas used for on-line identification of a glass conditioning process. Identification window is divided into intervals, in which the models can be updated based on recent process data, with the use of the integral state observer. Results of the performed simulations for the identified models are compared with the historical process data.
Go to article

Authors and Affiliations

Witold Byrski
1
Michał Drapała
1

  1. Department of Automatic Control and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Bibliography

  1.  Ł. Czekierda, F. Malawski, R. Straś, K. Zieliński, and S. Zieliński, “Leveraging cloud environment flexibility to smoothen the transition to remote teaching during covid-19 pandemic – a case study,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 4, p. e137934, 2021, doi: 10.24425/ bpasts.2021.137934.
  2.  A. Gryszczyńska, “The impact of the covid-19 pandemic on cybercrime,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 4, p. e137933, 2021, doi: 10.24425/bpasts.2021.137933.
  3.  W. Jamroga, D. Mestel, P. Roenne, P. Ryan, and M. Skrobot, “A survey of requirements for covid-19 mitigation strategies,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 4, p. e137724, 2021, doi: 10.24425/bpasts.2021.137724.
  4.  M. Gruda and M. Kędziora, “Analyzing and improving tools for supporting fighting against covid-19 based on prediction models and contact tracing,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 4, p. e137414, 2021, doi: 10.24425/bpasts.2021.137414.
  5.  A. Bobowski, J. Cichoń, and M. Kutyłowski, “Extensions for apple-google exposure notification mechanism,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 4, p. e137126, 2021, doi: 10.24425/bpasts.2021.137126.
  6.  M. Kozielski et al., “Enhancement of covid-19 symptom-based screening with quality-based classifier optimisation,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 4, p. e137349, 2021, doi: 10.24425/bpasts.2021.137349.
  7.  M. Paciorek, D. Poklewski-Koziełł, K. Racoń-Leja, A. Byrski, M. Gyurkovich, and W. Turek, “Microscopic simulation of pedestrian traffic in urban environment under epidemic conditions,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 4, p. e137725, 2021, doi: 10.24425/ bpasts.2021.137725.
  8.  M. Łoś, M. Woźniak, I. Muga, and M. Paszyński, “Threedimensional simulations of the airborne covid-19 pathogens using the advection- diffusion model and alternating-directions implicit solver,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 4, p. e137125, 2021, doi: 10.24425/ bpasts.2021.137125.
Go to article

Authors and Affiliations

Aneta Afelt
1
Aleksander Byrski
2
ORCID: ORCID
Victor Calo
3
Tyll Krüger
4
Lech Madeyski
4
ORCID: ORCID
Wojciech Penczek
5

  1. Institut de Recherche pour le Développement, Montpellier, France
  2. AGH University of Science and Technology, Krakow, Poland
  3. Curtin University, Perth, Australia
  4. Wroclaw University of Science and Technology, Wroclaw, Poland
  5. Institute of Computer Science, PAS, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The ongoing period of the pandemic makes everybody focused on the matters related to fighting this immense problem posed to the societies worldwide. The governments deal with the threat by publishing regulations which should allow to mitigate the pandemic, walking on thin ice as the decision makers do not always know how to properly respond to the threat in order to save people. Computer-based simulations of e.g. parts of the city or rural area should provide significant help, however, there are some requirements to fulfill. The simulation should be verifiable, supported by the urban research and it should be possible to run it in appropriate scale. Thus in this paper we present an interdisciplinary work of urban researchers and computer scientists, proposing a scalable, HPC-grade model of simulation, which was tested in a real scenario and may be further used to extend our knowledge about epidemic spread and the results of its counteracting methods. The paper shows the relevant state of the art, discusses the micro-scale simulation model, sketches out the elements of its implementation and provides tangible results gathered for a part of the city of Krakow, Poland.
Go to article

Bibliography

  1.  I. Mironowicz, Modele transformacji miast. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2016.
  2.  A. Matusik, K. Racoń-Leja, M. Gyurkovich, and K. Dudzic-Gyurkovich, “Hydrourban spatial development model for a resilient inner-city. the example of gdańsk,” Archit. City Environ., vol. 15, no. 43, pp. 1–2, 2020.
  3.  J.L. Kriken, P. Enquist, and R. Rapaport, City building: nine planning principles for the twenty-first century. Princeton Architectural Press, 2011.
  4.  W. Kosiński, Paradigm of the City of the 21st Century. Between the Past of the Polis and the Future of the Metropolis, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2016.
  5.  J.F.P. Rose, The well-tempered city: what modern science, ancient civilizations, and human nature teach us about the future of urban life. Harper Wave, 2017.
  6.  E. Rewers, Post-Polis. Wstęp do filozofii ponowoczesnego miasta. Kraków: Universitas, 2005, [in Polish].
  7.  M. Dymnicka, Przestrzeń publiczna, a przemiany miasta. Warszawa: Wydawnictwo Naukowe Scholar, 2013, [in Polish].
  8.  M. Gyurkovich et al., Hybrid Urban Structures, M. Gyurkovich, Ed. Kraków: Wydaw. PK, 2016.
  9.  S. Kostof, The City Shaped.Urban Patterns and Meanings through History. London – New York: Thames & Hudson, 1999.
  10.  A.A. Kantarek, Tkanka urbanistyczna.Wybrane zagadnienia, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2019, [in Polish].
  11.  A. Noworól, “Functional urban area as the city of the future,” Tech. Trans., vol. 111, no. 1-A, 2014.
  12.  K. Racoń-Leja, Miasto i wojna: wpływ II wojny światowej na przekształcenia struktury przestrzennej i współczesną kondycję urbanistyczną wybranych miast europejskich, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2019, [in Polish].
  13.  J. Teller, “Urban density and covid-19: towards an adaptive approach,” Build. Cities, vol. 2, no. 1, pp. 150–165, 2021.
  14.  C. at Johns Hopkins University, “Covid-19 dashboard by the center for systems science and engineering,” 2021, [Online] Available: https:// coronavirus.jhu.edu/map.html.
  15.  M. Castells, “Communication, power and counter-power in the network society,” Int. J. Commun., vol. 1, no. 1, p. 29, 2007.
  16.  R. Sennet, “How should we live? density in postpandemic cities,” Domus, no. 1046, 2020, [Online]. Available: https://www.domusweb. it/en/architecture/2020/05/09/how-should-we-live-density-in-post-pandemic-cities.html.
  17.  M. Kowicki, Rozproszenie zabudowy na obszarach Małopolski, a kryzys kreatywności opracowań planistyczno-przestrzennych. Kraków: Wydaw. PK, 2014, [in Polish].
  18.  G. Korzeniak et al., Małe i średnie miasta w policentrycznym rozwoju Polski. Kraków: Instytut Rozwoju Miast, 2014, [in Polish].
  19.  GUS, “Demographic Yearbook of Poland,” 2019.
  20.  N.A. Salingaros, “Eight city types and their interactions: the “eight-fold” model,” Techn. Trans., vol. 2, pp. 5–70, 2017.
  21.  J. Busquets and M. Corominas, Cerda and the Barcelona of the future: reality versus project. Centre de Cultura Contemporania de Barcelona, 2009.
  22.  A.A. Kantarek, K. Kwiatkowski, and I. Samuels, “From rural plots to urban superblocks,” Urban Morphology: journal of the International Seminar on Urban Form, vol. 22, no. 2, pp. 155–157, 2018.
  23.  M. Gyurkovich and A. Sotoca, “Towards the Cracow Metropolis – a dream or a reality? A selected issues,” Tech. Trans., vol. 115, no. 2, pp. 5–25, 2018.
  24.  P. Lorens, Równoważenie rozwoju przestrzennego miast polskich. Gdańsk: Wydaw. PG, 2013, [in Polish].
  25. Back to the Sense of the City: 11th VCT International monograph book, Year 2016, July, Krakow. Barcelona: Centre of Land Policy and Valuations (CPSV), 2016.
  26.  A. Zwoliński, “Geometrical structure of public spaces in virtual city models. exploring urban morphology by hierarchy of open spaces,” Space Form, vol. 2019, no. 37, pp. 235–243, 2019.
  27.  K. Lynch, Good city form. MIT Press, 2001.
  28.  D.C. Duives, W. Daamen, and S.P. Hoogendoorn, “State-ofthe-art crowd motion simulation models,” Transp. Res. Part C Emerging Technol., vol. 37, pp. 193–209, 2013.
  29.  E.D. Kuligowski, “Computer evacuation models for buildings,” in SFPE Handbook of Fire Protection Engineering. Springer, 2016, pp. 2152–2180.
  30.  B. Zhan, D.N. Monekosso, P. Remagnino, S.A. Velastin, and L.-Q.Xu, “Crowd analysis: a survey,” Mach. Vision Appl., vol. 19, no. 5‒6, pp. 345–357, 2008.
  31.  K. Teknomo, Y. Takeyama, and H. Inamura, “Review on microscopic pedestrian simulation model,” CoRR, vol. abs/1609.01808, 2016. [Online]. Available: http://arxiv.org/abs/1609.01808.
  32.  M. Paciorek, A. Bogacz, and W. Turek, “Scalable signal-based simulation of autonomous beings in complex environments,” in Computational Science – ICCS 2020. Cham: Springer International Publishing, 2020, pp. 144–157.
  33.  J. Wąs and R. Lubaś, “Towards realistic and effective agentbased models of crowd dynamics,” Neurocomputing, vol. 146, pp. 199–209, 2014.
  34.  P. Wittek and X. Rubio-Campillo, “Scalable agent-based modelling with cloud hpc resources for social simulations,” in 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings. IEEE, 2012, pp. 355–362.
  35.  J. Bujas, D. Dworak, W. Turek, and A. Byrski, “Highperformance computing framework with desynchronized information propagation for large-scale simulations,” J. Comput. Sci, vol. 32, pp. 70–86, 2019.
  36.  Y. Mohamadou, A. Halidou, and P.T. Kapen, “A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of covid-19,” Appl. Intell, vol. 50, no. 11, pp. 3913–3925, 2020.
  37.  M. Fuentes and M. Kuperman, “Cellular automata and epidemiological models with spatial dependence,” Physica A, vol. 267, no. 3, pp. 471‒486, 1999.
  38.  I. Tiwari, P. Sarin, and P. Parmananda, “Predictive modeling of disease propagation in a mobile, connected community using cellular automata,” Chaos: Interdiscip. J. Nonlinear Sci., vol. 30, no. 8, p. 081103, 2020.
  39.  M. Dascalu, M. Malita, A. Barbilian, E. Franti, and G.M. Stefan, “Enhanced cellular automata with autonomous agents for covid-19 pandemic modeling,” Rom. J. Inf. Sci. Technol, vol. 23, pp. S15–S27, 2020.
  40.  Y. Xiao, M. Yang, Z. Zhu, H. Yang, L. Zhang, and S. Ghader, “Modeling indoor-level non-pharmaceutical interventions during the covid-19 pandemic: a pedestrian dynamics-based microscopic simulation approach,” Transp. Policy, vol. 109, pp. 12–23, 2021.
  41.  T. Kapecki, “Elements of sustainable development in the context of the environmental and financial crisis and the covid-19 pandemic,” Sustainability, vol. 12, no. 15, pp. 1–12, 2020.
  42.  A. Jasiński, “Public space or safe space–remarks during the covid-19 pandemic,” Tech. Trans., vol. 117, no. 1, 2020.
  43.  S. Gzell, “Urban design and the sense of the city,” Tech. Trans., vol. 113, no. 2-A, pp. 15–19, 2016.
  44.  M. Hanzl, “Urban forms and green infrastructure–the implications for public health during the covid-19 pandemic,” Cities Health, pp. 1–5, 2020, doi: 10.1080/23748834.2020.1791441.
  45.  M.D. Pinheiro and N.C. Luís, “Covid-19 could leverage a sustainable built environment,” Sustainability, vol. 12, no. 14, p. 5863, 2020.
  46.  M.R. Fatmi, “Covid-19 impact on urban mobility,” J. Urban Manage., vol. 9, no. 3, pp. 270–275, 2020.
  47.  A. Porębska, P. Rizzi, S. Otsuki, and M. Shirotsuki, “Walkability and resilience: A qualitative approach to design for risk reduction,” Sustainability, vol. 11, no. 10, p. 2878, 2019.
  48.  F. Vergara Perucich, J. Correa Parra, and C. Aguirre-Nuñez, Atlas de indicadores espaciales de vulnerabilidad ante el covid-19 en Chile, F. Vergara, Ed. Centro Producción del Espacio, 2020.
  49.  W.H. Whyte et al., The social life of small urban spaces. Conservation Foundation Washington, DC, 1980.
  50.  A. Białkiewicz, B. Stelmach, and M.J. Żychowska, “Dobra kultury współczesnej. zarys problemu ochrony,” Wiadomości Konserwatorskie – J. Heritage Conserv., no. 63, pp. 152–162, 2020, [in Polish].
  51.  E. Szczerek, Rewitalizacja osiedli wielkopłytowych a ciągłośc´ i komplementarność przestrzeni publicznej miasta, A. Franta, Ed. Kraków: Wydaw. PK, 2018, [in Polish].
  52.  B. Malinowska-Petelenz, Sacrum in civitas: wybrane zagadnienia, A.A. Kantarek, Ed. Kraków: Wydaw. PK, 2018, [in Polish].
  53.  J. Gehl and B. Svarre, How to study public life. Washington, DC: Island press, 2013.
Go to article

Authors and Affiliations

Mateusz Paciorek
1
ORCID: ORCID
Damian Poklewski-Koziełł
2
ORCID: ORCID
Kinga Racoń-Leja
2
ORCID: ORCID
Aleksander Byrski
1
ORCID: ORCID
Mateusz Gyurkovich
2
ORCID: ORCID
Wojciech Turek
1
ORCID: ORCID

  1. AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow, Poland
  2. Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland

This page uses 'cookies'. Learn more