Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study aimed touse3D computed tomography (CT) to analyse a joint between two dissimilar materials produced by friction stir welding (FSW). As the materials joined, i.e., aluminum and copper, differ in properties (e.g., density and melting point), the weld is predicted to have an inhomogeneous microstructure. The investigations involved applying microfocus computed tomography (micro-CT) to visualize and analyze the volumetric structure of the joint. Volume rendering is extremely useful because, unlike computer modelling, which requires many simplifications, it helps create highly accurate representations of objects. Image segmentation into regions was performed through global gray-scale thresholding. The analysis also included elemental mapping of the weld cross-sections using scanning electron microscopy (SEM) and examination of its surface morphology by means of optical microscopy (OP). The joint finds its use in developing elements used in the chemical, energetics and aerospace industries, due to the excellent possibilities of combining many different properties, and above all, reducing the weight of the structure.
Go to article

Bibliography

[1] Zhao, Y., You, J., Qin, J., Dong, C., Liu, L., Liu, Z. & Miao, S. (2022). Stationary shoulder friction stir welding of Al–Cu dissimilar materials and its mechanism for improving the microstructures and mechanical properties of joint. Materials Science & Engineering A 837, 142754. https://doi.org/10.1016/j.msea.2022.142754.
[2] Zhou, L., Li, G.H., Zhang, R.X., Zhou, W.L., He, W.X., Huang, Y.X. & Song, X.G. (2019). Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint. Journal of Alloys and Compounds. 775(15), 372-382. https://doi.org/10.1016/ j.jallcom.2018.10.045.
[3] Tong, L., Xie, J.N., Liu, L., Chang, G. & Ojo, O.O. (2020). Microscopic appraisal and mechanical behavior of hybrid Cu/Al joints fabricated via friction stir spot welding-brazing and modified friction stir clinching-brazing. Journal of Materials Research and Technology. 9(6),13239-13249. https://doi.org/10.1016/j.jmrt.2020.09.042.
[4] Tian, W.H., Su, H. & Wu, C.S. (2020). Effect of ultrasonic vibration on thermal and material flow behavior, microstructure and mechanical properties of friction stir welded al/cu joints. International Journal of Advanced Manufacturing Technology. 107(1), 59-71. https://doi.org/10.1007/s00170-020-05019-0.
[5] Pilarczyk, J. (2005). Engineer's Handbook 2, Welding. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[6] Rajak, D.K., Pagar, D.D., Menezes, P.L. & Eyvazian, A. (2020). Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology. 34(24), 2613-2637. https://doi.org/10.1080/ 01694243.2020.1780716.
[7] Schneider, J., Chen, P. & Nunes, A.C. (2019). Entrapped oxide formation in the friction stir weld (FSW) process. Metallurgical and Materials Transactions A, 50, 257-270 https://doi.org/10.1007/s11661-018-4974-8.
[8] Rams, B., Pietras, A., & Mroczka K. (2014). Friction stir welding of elements made of cast aluminium alloys. Archives of Foundry Engineering. 59(1), 385-392.
[9] Martinsen, K., Hu, S.J. & Carlson, B.E. (2015). Joining of dissimilar materials. CIRP Annals. 64(2), 679-699. https://doi.org/10.1016/j.cirp.2015.05.006.
[10] Weman, K. (2011). Welding processes handbook. New York: Elsevier.
[11] Singh, R., Kumar, R., Feo, L., et al. (2016). Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Composites Part B: Engineering. 101, 77-86. https://doi.org/10.1016/ j.compositesb.2016.06.082.
[12] Rajak, D.K., Pagar, D.D., Menezes, P.L., et al. (2019). Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers. 11(10), 1667. https://doi.org/10.3390/polym11101667.
[13] Lee, H.S., Lee, Y.R., Min, K.J. (2016). Effects of friction stir welding speed on AA2195 alloy. In: MATEC Web of Conferences. Vol. 45, France: EDP Sciences.
[14] Ramnath, B.V., Subramanian, S.A., Rakesh, R. et al. (2018). A review on friction stir welding of aluminium metal matrix composites. In IOP Conference Series: Materials Science and Engineering. 8-9 March 2018. IOP Publishing; 012103.
[15] Bankowski, D., Spadlo, S. (2017). Vibratory tumbling of elements made of Hardox400 steel. In 26th International Conference on Metallurgy and Materials (pp. 725-730).
[16] Karrar, G., Galloway, A., Toumpis, A., Li, H.J. & Al-Badouc, F. (2020). Microstructural characterisation and mechanical properties of dissimilar aa5083-copper joints produced by friction stir welding. Journal of Materials Research and Technology. 9(5), 11968-11979. https://doi.org/10.1016/j.jmrt.2020.08.073.
[17] Galvao, I., Loureiro, A. & Rodrigues, D.M. (2016). Critical review on friction stir welding of aluminium to copper. Science and Technology of Welding and Joining. 21(7), 523-546. https://doi.org/10.1080/13621718.2015.1118813.
[18] Ouyang, J., Yarrapareddy, E. & Kovacevic, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology. 172(1), 110-122. https://doi.org/10.1016/j.jmatprotec.2005.09.013.
[19] Mehta, K.P. & Badheka, V.J. (2016). A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Materials and Manufacturing Processes. 31(3), 233-254. https://doi.org/10.1080/10426914.2015.1025971.
[20] Cao, F.J., Li, J.P., Hou, W.T., Shen, Y.F., Ni, R. (2021). Microstructural evolution and mechanical properties of the friction stir welded Al Cu dissimilar joint enhanced by post-weld heat treatment. Materials Characterization. 174, 110998. https://doi.org/10.1016/j.matchar.2021.110998.
[21] Hou, W.T., Shen, Z.K., Huda, N., Oheil, M., Shen, Y.F., Jahed, H. & Gerlich, A.P. (2021). Enhancing metallurgical and mechanical properties of friction stir butt welded joints of Al–Cu via cold sprayed Ni interlayer. Materials Science and Engineering: A. 809, 140992. https://doi.org/10.1016/j.msea.2021.140992.
[22] Mao, Y., Ni, Y., Qin, X.D.P. & Li, F. (2020). Microstructural characterization and mechanical properties of micro friction stir welded dissimilar al/cu ultra-thin sheets. Journal of Manufacturing Processes. 60, 356-365. https://doi.org/10.1016/j.jmapro.2020.10.064.
[23] Patel, N.P., Parlikar, P., Dhari, R.S., Mehta, K. & Pandya, M. (2019). Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint. Journal of Manufacturing Processes. 47, 98-109. https://doi.org/10.1016/j.jmapro.2019.09.020.
[24] Mehta, K.P. & Badheka, V.J. (2017). Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. Journal of Materials Processing Technology. 239, 336-345. https://doi.org/10.1016/ j.jmatprotec.2016.08.037.
[25] You, J.Q., Zhao, Y.Q., Dong, C.L., Wang, C.G., Miao, S., Yi, Y.Y. & Hai, Y.H. (2020). Microstructure characteristics and mechanical properties of stationary shoulder friction stir welded 2219-t6 aluminium alloy at high rotation speeds. The International Journal of Advanced Manufacturing Technology. 108, 987-996. https://doi.org/10.1007/s00170-019-04594-1.
[26] Li, D.X., Yang, X.Q., Cui, L., He, F.Z. & Zhang, X. (2015). Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-t651. Journal of Materials Processing Technology. 222, 391-398. https://doi.org/10.1016/ j.jmatprotec.2015.03.036.
[27] Depczynski, W., Spadlo, S., Mlynarczyk, P., Ziach, E., Hepner P. (2015). The selected properties of porous layers formed by pulse microwelding technique. In METAL 2015: 24TH International Conference on Metallurgy and Materials, 3 - 5 June 2015 (pp.1087-1092). Brno, Czech Republic.
[28] Bańkowski D. & Młynarczyk P. (2020). Visual testing of castings defects after vibratory machining. Archives of Foundry Engineering. 20(4), 72-76. DOI: 10.24425/afe.2020.133350.
[29] Mlynarczyk, P., Spadlo, S. (2016). The analysis of the effects formation iron - tungsten carbide layer on aluminum alloy by electrical discharge alloying process. In METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials, 25 – 27 May 2016 (pp.1109-1114). Brno, Czech Republic.
[30] Depczynski, W. Jasionowski, R., Mlynarczyk, P. (2018). The impact of process variables on the connection parameters during pulse micro-welding of the H800 superalloy. In METAL 2018: 27TH International Conference on Metallurgy and Materials, 23 – 25 May 2018 (pp. 1506-1512). Brno, Czech Republic.
[31] Bankowski, D. & Spadlo, S. (2019). The use of abrasive waterjet cutting to remove flash from castings. Archives of Foundry Engineering. 19(3), 94-98. DOI: 10.24425/afe.2019.129617.
[32] Spadlo, S., Depczynski, W. & Mlynarczyk, P. (2017). Selected properties of high velocity oxy liquid fuel (HVOLF) - sprayed nanocrystalline WC-Co Infralloy(TM) S7412 coatings modified by high energy electric pulse. Metalurgija. 56(3-4), 412-414.
[33] Bonarski, J.T., Kania, B., Bolanowski, K. & Karolczuk, A. (2015). Utility of stress-texture characteristics of structural materials by X-ray. Archives of Metallurgy and Materials. 60(3), 2247-2252. DOI: 10.1515/amm-2015-0370.
[34] Jezierski, G. (1993). Industrial radiography. Warszawa: Wydawnictwa Naukowo-Techniczne. (in Polish).
[35] Cierniak, R. (2005). Computed tomography. Construction of CT devices. Reconstruction algorithms. Warszawa: Akademicka Oficyna Wydawnicza EXIT. (in Polish).
[36] Kielczyk, J. (2006). Industrial radiography. Wydawnictwo Gamma. (in Polish).
[37] Ratajczak, E. (2012). X-ray computed tomography (CT) for industrial tasks. Pomiary Automatyka Robotyka. 5, 104-113. (in Polish).
[38] Cullity, B.D. (1959). Elements of X-Ray diffraction. London: Addison-Wesley Publising Company. Inc.
[39] Axon, H.J., Hume-Rothery, W. (1948). Proc. R. Soc. (London), Ser. A 193, 1.
[40] Pearson, W.B. (1958).: ÑA Handbook of Lattice Spacings and Structures of Metals and Alloysì. Oxford: Pergamon Press.  
Go to article

Authors and Affiliations

Wojciech P. Depczyński
1
ORCID: ORCID
Damian Bańkowski
1
ORCID: ORCID
Piotr S. Młynarczyk
1
ORCID: ORCID

  1. Radiography and Computed Tomography Laboratory, Department of Metal Science and Manufacturing Processes, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article aims to characterize Hadfield steel by analyzing its chemical composition, mechanical properties, and microstructure. The study focused on the twinning-induced work hardening of the alloy, which led to an increase in its hardness. The experimental data show that the material hardness at the surface improved considerably after solution heat treatment and work hardening, reaching more than 750 HV. By contrast, the hardness of the material core in the supersaturated condition was about 225 HV. The chemical and phase compositions of the material at the surface were compared with those of the core. The microstructural analysis of the steel revealed characteristic decarburization of the surface layer after solution heat treatment. The article also describes the effects of heat treatment on the properties and microstructure of Hadfield steel. The volumetric (qualitative) analysis of the computed tomography (CT) data of Hadfield steel subjected to heavy dynamic loading helped detect internal flaws, assess the material quality, and potentially prevent the structural failure or damage of the element tested.
Go to article

Bibliography

[1] Kalandyk, B., Tęcza, G., Zapała, R., Sobula, S. (2015). Cast high-manganese steel – the effect of microstructure on abrasive wear behaviour in miller test. Archives of Foundry Engineering. 15(2), 35-38. DOI: 10.1515/afe-2015-0033.
[2] Bartlett, L.N. & Avila, B.R. (2016). Grain refinement in lightweight advanced high-strength steel castings. International Journal of Metalcasting. 10, 401-420, DOI: 10.1007/s40962-016-0048-0.
[3] Guzman Fernandes, P.E. & Arruda, Santos, L. (2020). Effect of titanium and nitrogen inoculation on the microstructure, mechanical properties and abrasive wear resistance of Hadfield Steels. REM - International Engineering Journal. 73(5), 77-83. https://doi.org/10.1590/ 0370-44672019730023
[4] Chen, C., Lv, B., Feng, X., Zhang, F. & Beladi, H. (2018). Strain hardening and nanocrystallization behaviors in Hadfield steel subjected to surface severe plastic deformation. Materials Science and Engineering: A. 729, 178-184. DOI:10.1016/j.msea.2018.05.059.
[5] Chen, C., Zhang, F.C., Wang, F., Liu, H. & Yu, B.D. (2017). Efect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel. Materials Science & Engineering. 679, 95-103. DOI:10.1016/j.msea.2016.09.106.
[6] Bolanowski, K. (2008). Wear of working elements made of Hadfield cast steel under industrial conditions. Problemy Eksploatacji. 2, 25-32.
[7] Tęcza, G., Sobula, S. (2014). Effect of heat treatment on change microstructure of cast high-manganese Hadfield steel with elevated chromium content. Archives of Foundry Engineering. 14(3), 67-70.
[8] Gürol, U., Karadeniz, E., Çoban, O., & Kurnaz, S.C. (2021). Casting properties of ASTM A128 Gr. E1 steel modified with Mn-alloying and titanium ladle treatment. China Foundry. 18, 199-206. https://doi.org/10.1007/s41230-021-1002-1
[9] Pribulová, A., Babic, J. & Baricová, D. (2011). Influence of Hadfield´s steel chemical composition on its mechanical properties. Chem. Listy. 105, 430-432.
[10] Przybyłowicz, K. (2008). Iron alloys engineering. Kielce: Wyd. Politechniki Świętokrzyskiej w Kielcach (in Polish).
[11] Stradomski, Z. (2001). On the explosive hardening of cast Hadfield steel. Proceedings of a Conference on Advanced Steel Casting Technologies. Kraków. 112-122. (in Polish).
[12] Cullity, B.D. (1964). Basics of X-ray diffraction. Warszawa: PWN. (in Polish).
[13] Bolanowski, K. (2013). The influence of the hardness of the surface layer on the abrasion resistance of Hadfield cast steel. Problemy Eksploatacji. 1, 127-139. (in Polish).
[14] Przybyłowicz, K. (2012). Metal Science. Warszawa: WNT. (in Polish).
[15] El Fawjhry, M.K. (2018). Feasibility of new ladle-treated Hadfield steel for mining purposes. International Journal of Minerals, Metallurgy and Materials. 25(3), 300, https://doi.org/10.1007/s12613-018-1573-z.
[16] Subramanyan, D.K, Swansieger, A.E. and Avery, H.S. (1990). Austenitic manganese steels. In ASM Metals Handbook. Vol. 1, 10th Ed. (p. 822-840). India: American Society of Metals, India.
[17] Zykova, A., Popova, N., Kalashnikov, M. & Kurzina, I. (2017). Fine structure and phase composition of Fe–14Mn–1.2C steel: influence of a modified mixture based on refractory metals. International Journal of Minerals, Metallurgy and Materials. 24(5), 523-529. DOI: 10.1007/s12613-017-1433-2.
[18] Vdovin, K.N., Feoktistov, N.A., Gorlenko, D.A. et al. (2019). Modification of High-Manganese Steel Castings with Titanium Carbonitride. Steel in Translation. 3, 147-151. https://doi.org/10.3103/S0967091219030136.
[19] Issagulov, A.Z., Akhmetov, A.B., Naboko, Ye.P., Kusainova, G.D. & Kuszhanova, A.A. (2016). The research of modification process of steel Hadfield integrated alloy ferroalumisilicocalcium (Fe-Al-Si-Сa/FASC). Metalurgija. 55(3), 333-336.
[20] Haakonsen, F., Solberg, J.K., Klevan, O. & Van der Eijk, C. (2011). Grain refinement of austenitic manganese steels. In AISTech - Iron and Steel Technology Conference Proceedings, 5-6 May 2011 (pp. 763-771). Indianapolis, USA.
[21] El Fawkhry, M.K. (2021). Modified hadfield steel for castings of high and low gouging applications. International Journal of Metalcasting. 15(2), 613-624. https://doi.org/10.1007/s40962-020-00492-5.
[22] EI Fawkhry, M.K., Fathy, A.M. and Eissa, M.M. (2015). New energy saving technology for producing Hadfield steel to high gouging applications. Steel Research International. 86(3), 223-230. https://doi.org/10.1002/srin.201300388.
[23] El-Fawkhry, M.K., Fathy, A.M., Eissa, M. & El-Faramway, H. (2014). Eliminating heat treatment of Hadfield steel in stress abrasion wear applications. International Journal of Metalcasting. 8, 29-36. DOI: 10.1007/BF03355569
[24] Sobula, S., Kraiński, S. (2021). Effect of SiZr modification on the microstructure and properties of high manganese cast steel. Archives of Foundry Engineering. 4, 82-86. ISSN (1897-3310).
[25] Zambrano, O.A., Tressia, G., Souza, R.M. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 104621. DOI: doi.org/10.1016/j.engfailanal.2020.104621.
[26] Wróbel, T., Bartocha, D., Jezierski, J., Kalandyk, B., Sobula, S., Tęcza, G., Kostrzewa, K., Feliks E. High-manganese alloy cast steel in applications for cast elements of railway infrastructure. In Współpraca 2023 : XXIX international scientific conference of Polish, Czech and Slovak foundrymen, 26-28 April 2023. Niepołomice.
[27] Młyński, M., Sobula, S., Furgał, G. (2001). Economic aspects of the oxygen-recovery melts of Hadfield cast steel in the Foundry of Metalodlew S.A. Przegląd Odlewnictwa. 51(11), 382-384. (in Polish).
[28] Wróbel, T., Bartocha, D., Jezierski, J., Sobula, S., Kostrzewa K., Feliks E. (2023). High-manganese alloy cast steel used for cast elements of railway infrastructure. Stal, Metale & Nowe Technologie. 1-2, 30-34. (in Polish).
Go to article

Authors and Affiliations

Damian Bańkowski
1
ORCID: ORCID
Piotr S. Młynarczyk
1
ORCID: ORCID
Wojciech P. Depczyński
1
ORCID: ORCID
Kazimierz Bolanowski
1
ORCID: ORCID

  1. Kielce University of Technology, Poland

This page uses 'cookies'. Learn more