Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Videoplethysmography is currently recognized as a promising noninvasive heart rate measurement method advantageous for ubiquitous monitoring of humans in natural living conditions. Although the method is considered for application in several areas including telemedicine, sports and assisted living, its dependence on lighting conditions and camera performance is still not investigated enough. In this paper we report on research of various image acquisition aspects including the lighting spectrum, frame rate and compression. In the experimental part, we recorded five video sequences in various lighting conditions (fluorescent artificial light, dim daylight, infrared light, incandescent light bulb) using a programmable frame rate camera and a pulse oximeter as the reference. For a video sequence-based heart rate measurement we implemented a pulse detection algorithm based on the power spectral density, estimated using Welch’s technique. The results showed that lighting conditions and selected video camera settings including compression and the sampling frequency influence the heart rate detection accuracy. The average heart rate error also varies from 0.35 beats per minute (bpm) for fluorescent light to 6.6 bpm for dim daylight.

Go to article

Authors and Affiliations

Jaromir Przybyło
Eliasz Kańtoch
Mirosław Jabłoński
Piotr Augustyniak
Download PDF Download RIS Download Bibtex

Abstract

Variability of stress proteins concentration in caged carp exposed to transplantation experiment model dam reservoir was caused only by natural (climatic and biological) conditions. Thus, the reference data of stress proteins concentration range in young carp individuals were obtained. Metallothionein, HSP70 and HSP90 protein concentrations as biomarkers were assayed in the livers, gills and muscles of six-month-old (summer) or nine-month-old (autumn) carp individuals in relation to the site of encaging, season (summer or autumn), the term of sampling (1, 2 or 3 weeks after the transplantation) and tissue. Physicochemical analyses of the condition of water as well as pollution detection were conducted during each stage of the experiment. As the result of this study, the range of the variability of the stress protein concentration in young carp individuals was obtained. According to the analyses of the aquatic conditions of a reservoir with no detectable pollutants, we conclude that the variability in the stress protein concentration levels in the groups that were compared is solely the result of the natural conditions. Future regular monitoring of the reservoir using the transplantation method and young carp individuals will be both possible and reliable. Moreover, the range of variability in the stress protein concentrations that were measured in the young C. carpio individuals acquired from the model dam reservoir in relation to all of the studied factors may be applied in the monitoring of any other similar reservoir.
Go to article

Bibliography

1. Absalon, D., Matysik, M., Woźnica, A., Łozowski, B., Jarosz, W., Ulańczyk, R., Babczyńska, A. & Pasierbiński, A. (2020). Multi-Faceted Environmental Analysis to Improve the Quality of Anthropogenic Water Reservoirs (Paprocany Reservoir Case Study). Sensors, 20,2626, DOI: 10.3390/s20092626.
2. Ahmad M., Zuberi, A., Ali M., Sye A., ul Hassan Murtaza M, Khan A. & Kamran M. (2020). Effect of acclimated temperature on thermal tolerance, immune response and expression of HSP genes in Labeo rohita, Catla catla and their intergeneric hybrids. Journal of Thermal Biology, 89, 102570, DOI: 10.1016/j.jtherbio.2020.102570.
3. Allert, A.L., DiStefano, R.J., Fairchild, J.F., Schmitt, C.J. McKee, M.J., Girondo, J.A., Brumbaugh, W.G. & May, T.W. (2013). Effects of historical lead–zinc mining on riffle-dwelling benthic fish and crayfish in the Big River of southeastern Missouri, USA. Ecotoxicology, 22, pp. 506–521, DOI: 10.1007/s10646-013-1043-3.
4. Antonopoulou, E., Chatzigiannidou, I., Feidantsis, K., Kounna, C. & Chatzifotis, S. (2020). Effect of water temperature on cellular stress responses in meagre (Argyrosomus regius). Fish Physiol Biochem 46, pp.1075–1091, DOI: 10.1007/s10695-020-00773-0.
5. Barton, B.A. (2002). Stress in Fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 42, pp. 517–525, DOI: 10.1093/icb/42.3.517.
6. Barton, B.A., & Iwama, I.W. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1, pp. 3–26, DOI: 10.1016/0959-8030(91)90019-G.
7. Beltramini, M., Zambenedetti, P., Wittkowski, W. & Zatta, P. (2004). Effects of steroid hormones on the Zn, Cu and MTI/II levels in the mouse brain. Brain Res. 1013: pp. 134–141.
8. Bernet, D., Schmidt-Posthaus, H., Wahli, T. & Burkhardt-Holm, P. 2000. Effects of wastewater on fish health: an integrated approach to biomarker responses in brown trout (Salmo trutta L.). J. Aquat. Ecos. Stress Recov., 8, pp. 143–151, DOI: 10.1023/A:1011481632510.
9. Bilnik, A., Świercz, T. & Siudy, A. (2004). Zbiornik Goczałkowicki wczoraj i dziś. Górnośląskie przedsiębiorstwo wodociągów w Katowicach, Goczałkowice; (Goczałkowice Reservoir yesterday and today. Silesian Waterworks Plc in Katowice, Goczałkowice; ).
10. Bougas, B., Normandeau E, Grasset J., Defo M.A., Campbell, P.G.C., Couture P. & Bernatchez L.(2016). Transcriptional response of yellow perch to changes in ambient metal concentrations—A reciprocal field transplantation experiment. Aquat. Toxicol., 173, pp. 132-142, DOI: 10.1016/j.aquatox.2015.12.014.
11. Bradford, M.M. (1976). Rapid and sensitive method for the quantitation of mikrogram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem., 172, pp. 248–254, DOI: 10.1006/abio.1976.9999.
12. Brylińska, M. (2000). Ryby słodkowodne Polski. Karp. Wydawnictwo Naukowe PWN, Warszawa. Conte, F.S. (2004). Stress and the welfare of cultured fish. Appl. Anim. Behav. Sci., 86, pp. 205–223, DOI: 10.1016/j.applanim.2004.02.003.
13. Coyle, P., Philcox, J.C., Carey, L.C. & Rofe, A.M. (2002). Metallothionein: The multipurpose protein. Cell. Mol. Life Sci., 59, pp. 627–647, DOI: 10.1007/s00018-002-8454-2.
14. Cretì, P., Trinchella, F. & Scudiero, R. (2010). Heavy metal bioaccumulation and metallothionein content in tissues of the sea bream Sparus aurata from three different fish farming systems. Fish Physiol. Biochem., 36, pp. 101–107, DOI: 10.1007/s10661-009-0948-z.
15. Crivelli, A.J. (1981). The biology of the common carp, Cyprinus carpio L. in the Camargue, southern France . J. Fish Biol. 18, pp. 271–290, DOI: 10.1111/j.1095-8649.1981.tb03769.x.
16. Crowther, J.R. (2009). The ELISA Guidebook 2-nd ed. Springer-Verlag Gmbh.
17. Dang, ZC, Berntssen, M.H.G., Lundebye, A.K., Flik, G., Wendelaar Bonga, S.E. & Lock, R.A.C. (2001). Metallothionein and cortisol receptor expression in gills of Atlantic salmon, Salmo salar, exposed to dietary cadmium. Aquat. Toxicol. 53, pp. 91–101, DOI: 10.1016/s0166-445x(00)00168-5.
18. Mazon, F.A, Nolan, DT, Lock, R.A.C., Bonga, W.S.E. & Fernandes, M.N. (2007). Opercular epithelial cells: A simple approach for in vitro studies of cellular responses in fish. Toxicology, 230, pp. 53–63, DOI: 10.1016/j.tox.2006.10.027.
19. Dou, X., Tian, X., Zheng, Y., Huang, J., Shen, Z., Li, H., Wang, X., Mo, F., Wang, W., Wang, S. & Shen, H. (2014). Psychological stress induced hippocampus zinc dyshomeostasis and depression-like behavior in rats. Behav. Brain Res. 273, pp. 133–138, DOI: 10.1016/j.bbr.2014.07.040.
20. El-Khayat, H.M.M., Abu Taleb, H.M., Helal, N.S. & Ghoname, S.I. (2020). Assessment of metallothionein expression in Biomphalaria alexandrina snails and Oreochromis niloticus Fish as a biomarker for water pollution with heavy metals. Egyptian Journal of Aquatic Biology and Fisheries, 24, pp. 209-223, DOI: 10.21608/ejabf.2020.80032.
21. Ellis, J., Cummings, V., Hewitt, L., Thrush, S. & Norkko, A. (2002). Determining effects of suspended sediment on condition of a suspension feeding bivalve (Atrina zelandica): results of a survey, a laboratory experiment and a field transplant experiment. J. Exp. Mar. Biol. Ecol., 267, pp. 147–174, DOI: 10.1016/S0022-0981(01)00355-0.
22. Esyakova, O.A & Voronin V.M. (2020). Bioindication methods in environmental engineering. IOP Conf. Ser.: Mater. Sci. Eng. 862 062009, DOI: 10.1088/1757-899X/862/6/062009.
23. Fåhræus-Van Ree, G.E. & Payne, J.F. (2005). Endocrine disruption in the pituitary of white sucker (Catostomus commersoni) caged in a lake contaminated with iron-ore mine tailings. Hydrobiologia, 32, pp. 221–224, DOI: 10.1007/s10750-004-9017-3.
24. Falfushynska, H.I., Romanchuk, L.D. & Stolyar, O.B. (2005). Seasonal and spatial comparison of metallothioneins in frog Rana ridibunda from feral populations. Ecotoxicology 17, pp. 781–788, DOI: 10.1007/s10646-008-0229-6.
25. Falfushynska, H.I. & Stolyar, O.B. (2009). Responses of biochemical markers in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotox. Environ. Safe., 72, pp. 729–736. DOI: 10.1016/j.ecoenv.2008.04.006.
26. FAO. Fishstat plus (v. 2.30). FAO, Rome; 2007
27. Fernández-Delgado, C. (1990). Life history patterns of the common carp, Cyprinus carpio, in the estuary of Guadalquivir river in south-west Spain. Hydrobiologia, 206, pp. 19–28, DOI: 10.1007/BF00018966.
28. Gandar, A., Jean, S., Canal J., Marty-Gasset, N., Gilbert, F. & Laffaille, P. (2016). Multistress effects on goldfish (Carassius auratus) behavior and metabolism. Environ Sci Pollut Res 23, pp. 3184–3194, DOI: 10.1007/s11356-015-5147-6
29. Guinot, D Ureńa, R., Pastor, A., Varó, I, del Ramo, J. & Torreblanca, A. (2010). Long-term effect of temperature on bioaccumulation of dietary metals and metallothionein induction in Sparus aurata. Chemosphere, 87, pp. 1215–1221, DOI: 10.1016/j.chemosphere.2012.01.020.
30. Higashimoto, M., Sano, M., Kondoh, M. & Sato, M. (2002). Different responses of metallothionein and leptin induced in the mouse by fasting stress. Biol. Trace Elem. Res., 75, pp: 75–84, DOI: 10.1385/BTER:89:1:75.
31. Hybská, H., Mitterpach, J., Samešová, D., Schwarz M., Fialová, J. & Veverková D. (2018). Assessment of ecotoxicological properties of oils in water. Archives of Environmental Protection, 44(4), pp. 31-37. DOI: 10.24425/aep.2018.122300
32. Hyllner, S.J., Andersson, T., Haux, C. & Olsson, P.E. (1989). Cortisol induction of metallothionein in primary culture of rainbow trout hepatocytes. J. Cell Physiol., 139, pp. 24–28, DOI: 10.1002/jcp.1041390105.
33. Kamel, N., Burgeot, T., Banni, M., Chalghaf, M., Devin, S., Minier, C. & Boussetta, H. (2014). Effects of increasing temperatures on biomarker responses and accumulation of hazardous substances in rope mussels (Mytilus galloprovincialis) from Bizerte lagoon. Environ. Sci. Pollut. R., 21, pp. 6108–6123. DOI: 10.1007/s11356-014-2540-5.
34. Kazour, M. & Amara, R. (2020). Is blue mussel caging an efficient method for monitoring environmental microplastics pollution? Science of The Total Environment, 710, 135649. DOI: 10.1016/j.scitotenv.2019.135649
35. Klobučar, G.I.V., Štambuk, A.S., Pavlica, M., Sertić Perić, M., Kutuzović Hackenberger, B. & Hylland, K. (2010). Genotoxicity monitoring of freshwater environments using caged carp (Cyprinus carpio). Ecotoxicology 19, pp. 77–84, DOI: 10.1007/s10646-009-0390-6.
36. Köprücü, K. & Rahmi, A. 2004. The toxic effects of pyrethroid deltamethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Pestic. Biochem. Phys. 80, pp. 47–53, DOI: 10.1016/j.pestbp.2004.05.004.
37. Langston, W.J., Chesman, B.S., Burt, G.R., Pope, N.D. & McEvoy, J. (2002). Metallothionein in liver of eels Anguilla anguilla from the Thames Estuary: an indicator of environmental quality? Mar. Environ. Res., 53, pp. 263–293, DOI: 10.1016/S0141-1136(01)00113-1.
38. Ming, Y., Chenyuan, P., Jun, B. & Kejian, W. 2014. Regulation of metallothionein gene expression in response to benzo[a]pyrene exposure and bacterial challenge in marine cultured black porgy (Acanthopagrus schlegelii). Chin. J. Geochem. 33, pp. 404–410, DOI 10.1007/s11631-014-0705-z.
39. Mocchegiani, E., Giacconi, R., Cipriano, C., Gasparini, N., Orlando, F., Stecconi, R., Muzzioli, M., Isani, G. & Carpene, E. (2002). Metallothioneins (I+II) and thyroid–thymus axis efficiency in old mice: role of corticosterone and zinc supply. Mech. Ageing Dev., 123, pp. 675–694, DOI: 10.1016/S0047-6374(01)00414-6.
40. Oikari, A. (2006). Caging techniques for field exposures of fish to chemical contaminants. Aquat. Toxicol., 78, pp. 370–81, DOI: 10.1016/j.aquatox.2006.03.010.
41. Osman, A.G.M., Wuertz, S. & Mohammed-Geba, K. (2019). Lead-induced heat shock protein (HSP70) and metallothionein (MT) gene expression in the embryos of African catfish Clarias gariepinus (Burchell, 1822). Scientific African 3, e00056.
42. Park, M.S., Shin, H.S., Lee, J., Kil, G.S. & Choi, C.Y. (2010). Influence of quercetin on the n physiological response to cadmium stress in olive flounder, Paralichthys olivaceus: effects on hematological and biochemical parameters Mol. Cell. Toxicol., 6, pp. 151–159. DOI: 10.1007/s13273-010-0022-5.
43. Rahman, M.M., Kadowaki, S., Balcombe, S.R. & Wahab, A. (2010). Common carp (Cyprinus carpio L.) alters its feedingiche in response to changing food resources: direct observations in simulated ponds. Ecol. Res., 25, pp. 303–309, DOI: 10.1007/s11284-009-0657-7.
44. Schofield, P.J., Loftus, W.F., Kobza, M.R., Cook, M.I. & Slone, D.H. (2010). Tolerance of nonindigenous cichlid fishes (Cichlasoma urophthalmus, Hemichromis letourneuxi) to low temperature: laboratory and field experiments in south Florida. Biol. Invasions, 12, pp. 2441–2457.
45. Shaw, J.P., Large, A.T., Livingstone, D.R., Doyotte, A., Renger, J., Chipman, J.K. & Peters, L.D. (2002). Elevation of cytochrome P450-immunopositive protein and DNA damage in mussels (Mytilus edulis) transplanted to a contaminated site. Mar. Environ. Res, 54, pp. 505–509, DOI: 10.1016/S0141-1136(02)00191-5 .
46. Shi, J., Li X, He, T., Wang ,J., Wang, Z., Li, P., Lai Y, Sanganyado, E. & Liu, W. (2018). Integrated assessment of heavy metal pollution using transplanted mussels in eastern Guangdong, China. Environmental Pollution, 243(A), pp. 601-609, DOI: 10.1016/j.envpol.2018.09.006.
47. Sogawa, N., Sogawa, C.A., Fukuoka, H., Mukubo, Y., Yoneyama, T., Okano, Y., Furuta, H. & Onodera, K. (2003). The changes of hepatic metallothionein synthesis and the hepatic damage induced by starvation in mice. Method. Find. Exp. Clin., 25, pp. 601–606, DOI: 10.1358/mf.2003.25.8.778079.
48. Tarnawska, M., Augustyniak, M., Łaszczyca, P., Migula, P., Irnazarow, I., Krzyżowski, M. & Babczyńska, A. (2019). Immune response of juvenile common carp (Cyprinus carpio L.) exposed to a mixture of sewage chemicals. Fish & Shellfish Immunology, 88, pp. 17-27, DOI: 10.1016/j.fsi.2019.02.049.
49. Tian, X., Zheng, Y., Li, Y., Shen, Z., Tao, L., Dou, X., Qian, J. & Shen, H. (2014). Psychological stress induced zinc accumulation and up-regulation of ZIP14 and metallothionein in rat liver. BMC Gastroenterol. 14, 32. DOI: 10.1186/1471-230X-14-32
50. Todd, A.S., McKnight, D.M., Jaros, C.L. & Marchitto, T.M. (2007). Effects of Acid Rock Drainage on Stocked Rainbow Trout (Oncorhynchus mykiss): An In-Situ, Caged Fish Experiment. Environ. Monit. Assess., 130, pp. 111-127, DOI: 10.1007/s10661-006-9382-7
51. Traven, L., Mićović, V., Vukić Lušić, D. & Smital, T. (2013). The responses of the hepatosomatic index (HSI), 7-ethoxyresorufin-O-deethylase (EROD) activity and glutathione-S-transferase (GST) activity in sea bass (Dicentrarchus labrax, Linnaeus 1758) caged at a polluted site: implications for their use in environmental risk assessment. Environ. Monit. Assess., 185, pp. 9009-9018, DOI: 10.1007/s10661-013-3230-3.
52. Ulańczyk R., Klis Cz., Bartosz Łozowski B., Babczynska A., Woźnica A., Długosz J. & Wilk-Wozniak, E. (2021). Phytoplankton production in relation to simulated hydro- and thermodynamics during a hydrological wet year – Goczałkowice reservoir (Poland) case study. J. Ecol. Ind., 121, 106991. DOI: 10.1016/j.ecolind.2020.106991
53. Van Cleef, K.A., Kaplan, L.A.E. & Crivello, J.F. (2000). The relationship between reproductive status and metallothionein mRNA expression in the common killifish, Fundulus heteroclitus. Environ. Biol. Fish. 57, pp. 97-105, DOI: 10.1023/A:1007579718536.
54. Van Cleef-Toedt, K.A., Kaplan, L.A.E. & Crivello, J.F. (2000). Metallothionein mRNA expression in spawning and non-spawning Fundulus heteroclitus following acute exposure to starvation and waterborne cadmium. Fish Physiol. Biochem., 22, pp. 319–327, DOI: 10.1023/A:1007854106269.
55. Vašák, M. & Meloni, G. 2011. Chemistry and biology of mammalian metallothioneins. J. Biol. Inorg. Chem. 16, pp. 1067-78, DOI: 10.1007/s00775-011-0799-2.
56. Walker, C.J., Gelsleichter. J., Adams, D.H. & Manire, C.A. (2014). Evaluation of the use of metallothionein as a biomarker for detecting physiological responses to mercury exposure in the bonnethead, Sphyrna tiburo. Fish Physiol. Biochem., 40, pp. 1361-1371, DOI: 10.1007/s10695-014-9930-y.
57. Werner, J., Wautier, K., Evans, R.E., Baron, C.L., Kidd, K. & Palace, V. (2003). Waterborne ethynylestradiol induces vitellogenin and alters metallothionein expression in lake trout (Salvelinus namaycush). Aquat. Toxicol., 62, pp. 321-328, DOI: 10.1016/S0166-445X(02)00104-2.
58. Wu, R.S.S., & Shin, P.K.S. (1998). Transplant experiments on growth and mortality of the fan mussel Pinna bicolor. Aquaculture 163, pp. 47-62, https://www.sciencedirect.com/science/article/pii/S004484869800218X.
59. Yukawa, S., Yustiawati, Syawal, M.S., Kobayashi, K., Hosokawa, T., Saito, T., Tanaka, S. & Kurasaki, M. (2014). Contents of hepatic and renal metallothioneins in Hyposarcus pardalis: for construction of biomarker for heavy metal contamination in environments. Environ. Earth Sci., 71, pp.1945-1952, DOI: 10.1007/s12665-013-2600-z.
60. Załęska-Radziwiłł, M., Łebkowska, M., Affek, K. & Zarzeczna, A. (2011). Environmental risk assessment of selected pharmaceuticals present in surface water in relation to animals. Archives of Environmental Protection, 37(3), pp. 31-42.
61. Zgórska, A., Arendarczyk, A.& Grabińska-Sota, E. 2011. Toxicity assessment of hospital wastewater by the use of a biotest battery. Archives of Environmental Protection, 37(3), pp. 55-61.
62. http://www.fao.org/fishery/culturedspecies/Cyprinus_carpio/en [November 25, 2020]
63. https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/W.123278?lng=pl [November 25, 2020]
Go to article

Authors and Affiliations

Agnieszka Babczyńska
1
Monika Tarnawska
1
Piotr Łaszczyca
1
ORCID: ORCID
Paweł Migula
1
Bartosz Łozowski
1
Andrzej Woźnica
1
Ilgiz Irnazarow
2
ORCID: ORCID
Maria Augustyniak
1

  1. Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
  2. Institute of Ichtyobiology and Aquaculture in Gołysz, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study objective was to analyse the number of tourists present in the shore zone and bathing areas of lakes with regard to their tourist carrying capacity and the amount of biogenic substances potentially entering the ecosystem from the beach and bathing areas. The procedures from project between the EU and Poland, in the module “Development of the sanitary supervision of water quality” were used in three categories: physiological substances – sweat and urine; water-soluble and insoluble organic compounds; and biogenic elements – nitrogen and phosphorus. The research was conducted in two model mesotrophic lakes, Piaseczno and Zagłębocze, located in the Łęczna- Włodawa Lakeland (eastern Poland). The data were analysed in reference to biological trophic status indices defining the limnological status of lakes in the summer of 2014 and 2016. Analyses of gross primary production of phytoplankton using the light and dark bottles method and the analysis of chlorophyll a concentration were applied using the laboratory spectrophotometric method. The relatively small number of tourists recorded in the shore zone of both lakes did not exceed their tourist carrying capacity, and their potential contribution of biogenic substances to the lake ecosystems was small. Biological trophic indices for both lakes indicated that they had been continually late- mesotrophic for decades. The amount of biogenic substances directly linked to beach tourism usually has a minor effect on the limnological status of mesotrophic lakes. Due to the specific character of lake ecosystems, however, even small amounts of these substances can contribute to the destabilisation of the biocenotic system.
Go to article

Authors and Affiliations

Artur Serafin
1
ORCID: ORCID
Antoni Grzywna
1
ORCID: ORCID
Renata Augustyniak
2
ORCID: ORCID
Urszula Bronowicka-Mielniczuk
3
ORCID: ORCID

  1. University of Life Sciences in Lublin, Department of Environmental Engineering and Geodesy, Lublin, Poland
  2. University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Olsztyn, Poland
  3. University of Life Sciences in Lublin, Department of Applied Mathematics and Computer, Głęboka 28, 20-612 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The research covered two lakes: Karczemne and Domowe Małe, which served as receivers for rainwater and municipal or industrial sewage. The sediment cores were obtained using a Kajak tube sampler. Analyses of HM, PAH and PCB were done by the AAS, ICP-AES and GC MS methods. OM, SiO2, TH, Ca, Mg, CO2, Fe, Al, Mn, TN and TP were measured. The research showed that the sediments of Lake Karczemne, into which the untreated municipal sewage was discharged, are characterized by a high content of P. It was found that the sediments accumulate toxins, OM and pollutants characteristic for various industries. Karczemne Lake which collected municipal and industrial wastewater, contained a high content of Pb, Cu and PAH in the sediments, and Domowe Małe Lake, receiving stormwater, contained high concentrations of PAH. Research has shown that one of the most important tools for selecting an appropriate method of lake restoration is the analysis of the spatial distribution of pollutants in the bottom sediments. Thanks to such an analysis of the composition of the bottom sediments and the correlation between the components of the sediments and their sorption properties, the restoration of the Karczemne Lake using the Ripl method was planned and the possibility of restoration of the Domowe Małe Lake in this way was eliminated.
Go to article

Bibliography

  1. Algül, F. & Beyhan, M. (2020). Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Scientific Reports, 10, 11728. DOI:10.1038/s41598-020-68833-2.
  2. Alves, C., Gonçalves, C., Evtyugina, M., Pio, C., Mirante, F. & Puxbaum, H. (2010). Particulate organic compounds emitted form experimental wildland fires in a Mediterranean ecosystem. Atmospheric Environment, 44, 23, pp. 2750-2759. DOI:10.1016/j.atmosenv.2010.04.029.
  3. Augustyniak, R., Grochowska, J.K., Łopata, M., Parszuto, K., Tandyrak, R. & Tunowski, J. (2019). Sorption properties of the bottom sediment of a lake restored by phosphorus inactivation method15 years after the termination of the lake restoration procedures. Water, 11, 10, 1-20. DOI:10.3390/w11102175.
  4. Augustyniak, R., Neugebauer, M., Kowalska, J., Szymański, D., Wiśniewski, G., Filipkowska, Z., Grochowska, J., Łopata, M., Parszuto, K. & Tandyrak, R. (2015). Bottom deposits of stratified, seepage, urban lake (on the example of Tyrsko Lake, Poland) as a factor potentially shaping lake water quality. Journal of Ecological Engineering, 18, 5, pp. 55-62.
  5. Barbusiński, K. & Nocoń, W. (2011). Heavy metal compound content in Kłodnica bottom sediments. Environmental Protection, 33, 1, pp. 13 – 17. (in Polish)
  6. Bartoli, G., Papa, S., Sagnella, E. & Fioretto, A. (2012). Heavy metal content in sediments along the Calore river: Relationships with physical–chemical characteristics. Journal of Environmental Management, 95, pp. 9-14. DOI:10.1016/j.jenvman.2011.02.013.
  7. Bing, H.J., Wu, Y.H., Sunz, B. & Yao, S.C. (2011). Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake Catchment, China. Journal of Environmental Sciences, 23, 10, pp. 1671-1678. DOI:10.1016/s1001-0742(10)60593-1.
  8. Birch, G. & Taylor, S. (1999). Source of heavy metals in sediments of the Port Jackson estuary, Australia. Science of The Total Environment, 227, (2–3), pp. 123-138.
  9. Bocca, B., Alimonti, A., Petrucci, F., Violante, N., Sancesario, G. & Forte, G. (2004). Quantification of trace elements by sector field inductively coupled plasma spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson’s disease. Spectrochimica Acta, 59, 4, pp. 559–566. DOI:10.1016/j.sab.2004.02.007.
  10. Bojakowska, I. & Sokołowska, G. (1996). Heavy metals in lake sediments of the Kashubian Lake District. Geological Review, 44, 9, pp. 920 – 923. (in Polish)
  11. Bojakowska, I., Sztuczyńska, A. & Grabiec-Raczak, E. (2012). Monitoring studies of lake sediments in Poland: polycyclic aromatic hydrocarbons. Bulletin of the Polish Geological Institute, 450, pp. 17-26. (in Polish)
  12. Brzozowska, R. & Gawrońska, H. (2009). The influence of a long-term artificial aeration on the nitrogen compounds exchange between bottom sediments and water in Lake Długie. Oceanological and Hydrobiological Studies, 38, 1, pp. 113-119.
  13. Cappacioni, B., Martini, M. & Mangani, F. (1995). Light hydrocarbons in hydrothermal and magmatic fumaroles: hints of catalytic and thermal reactions. Bulletin of Volconalogy, 56, 8, pp. 593-600.
  14. Chen, M., Ding, S., Zhang, L., Li, Y., Sun, Q. & Zhang, Ch. (2017). An investigation of the effects of elevated phosphorus in water on the release of heavy metals in sediments at a high resolution. Science of The Total Environment, 575, pp. 330-337. DOI:10.1016/j.scitotenv.2016.10.063.
  15. Dhanakumar, S., Solaraj, G. & Mohanraj, R. (2015). Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicology and Environmental Safety, 113, pp. 145-151. DOI:10.1016/j.ecoenv.2014.11.032.
  16. EPA (2001). Parameters of Water Quality. Interpretation and Standards. Environmental Protection Agency, Wexford.
  17. Fu, J., Zhao, Ch., Luo, Y., Liu, Ch., Kyzas, G.Z., Luo, Y., Zhao, D., An, S. & Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 270, pp. 102-109. DOI:10.1016/j.jhazmat.2014.01.044.
  18. Gabarrón, M., Faz, A., Martínez-Martínez, S., Zornoza, R. & Acosta, J.A. (2017). Assessment of metals behaviour in industrial soil using sequential extraction, multivariable analysis and a geostatistical approach. Journal of Geochemical Exploration, 172, pp. 174-183. DOI:10.1016/j.gexplo.2016.10.015.
  19. Grochowska, J., Augustyniak, R., Łopata, M. & Tandyrak, R. (2020). Is it possible to restore a heavily polluted, shallow, urban lake? Applied Science, 10, 11, pp. 3698. DOI:10.3390/app10113698.
  20. Grochowska, J., Augustyniak, R., Łopata, M., Parszuto, K., Tandyrak, R. & Płachta, A. (2019). From saprotrophic to clear water status: the restoration path of a degraded urban lake. Water, Air & Soil Pollution, 230, pp. 1-14. DOI:10.1007/s11270-019-4138-5.
  21. Grochowska, J., Tandyrak, R. & Wiśniewski, G. (2014). Long-term hydrochemical changes in a lake after the application of several protection measures in the catchment. Polish Journal of Natural Sciences, 29, 3, pp. 251 - 263.
  22. Håkanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, pp. 975-1001.
  23. Håkanson, L. (2004). Internal loading: A new solution to an old problem in aquatic sciences. Lake and Reservoir and Management, 9, 1, pp. 3-23. DOI:10.1111/j. 1440-1770.2004.00230.x.
  24. Hermanowicz, W., Dożańska, W., Dojlido, J., Koziorowski, B. & Zerbe, J. (1999). Physico - chemical study of water and wastewater. Ed. Arkady, Warsaw, Poland, 1999. (in Polish)
  25. Jansson, M. (1987). Anaerobic dissolution of iron-phosphorus complex in sediment due to the activity of nitrate-reducing bacteria. Microbial Ecology, 14, pp. 81-89.
  26. Jeremiason, J.D., Eisenreich, S.J. & Peterson, M.J. (2011). Accumulation and recycling of PCBs and PAHs in artificially eutrophied lake 227. Canadian Journal of Fisheries and Aquatic Sciences, 56, 4, pp. 650-660. DOI:10.1139/cjfas-56-4-650.
  27. Jeremiason, J.D., Eisenreich, S.J., Peterson, M.J., Beaty, K.G., Hecky, R. & Elser, J.J. (1999). Biogeochemical cycling of PCBs in lakes of variable trophic status: A paired-lake experiment. Limnology and Oceanography, 44, 3, 2, pp. 889-902. DOI:10.4319/lo.1999.44.3.
  28. Joniak, T., Jakubowska, N. & Szeląg-Wasilewska, E. (2013). Degradation of the recreational functions of urban lake: A preliminary evaluation of water turbidity and light availability (Strzeszyńskie Lake, Western Poland). Polish Journal of Natural Sciences, 28, pp. 43–51.
  29. Juśkiewicz, W., Marszelewski, W. & Tylmann, W. (2015). Differentiation of the concentration of heavy metals and persistent organic pollutants in lake sediments depending on the catchment management (Lake Gopło case study). Bulletin of Geography. Physical Geography Series, 8, 71-80. DOI:10.1515/bgeo-2015-0006.
  30. Kaca, E. (2003). Measurements of water flow volume and mass of substance contained in it, and its uncertainty on the example of fish ponds. Water-Environment-Rural Areas, 13, 41, pp. 31-57. (in Polish)
  31. Kang, X., Song, J., Yuan, H., Duan, L., Li, X., Li, N., Liang, X. & Qu, B. (2017). Speciation of heavy metals in different grain sizes of Jiaozhou Bay sediments: bioavailability, ecological risk assessment and source analysis on a centennial timescale. Ecotoxicology and Environmental Safety, 143, pp. 296-306. DOI:10.1016/j.ecoenv.2017.05.036.
  32. Katsoyiannis, A., Terzi, E. & Cai, Q.Y. (2007). On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere, 69, pp. 1337-1339. DOI:10.1016/j.chemosphere.2007.05.084.
  33. Kishe, M.A. & Machiwa, J.F. (2003). Distribution of heavy metals in sediments of Mwanza Gulf of Lake Victoria, Tanzania. Environment International, 28, 7, pp. 619-625. DOI:10.1016/S0160-4120(02)00099-5.
  34. Kondracki, J.A. (2011). Regional Geography of Poland. Ed. PWN, Warsaw, Poland. (in Polish)
  35. Kowalczewska-Madura, K., Dondajewska, R., Gołdyn, R., Kozak, A. & Messyasz, B. (2018). Internal phosphorus loading from the bottom sediments of a dimictic lake during its sustainable restoration. Water, Air & Soil Pollution, 229, 8, pp. 280. DOI:10.1007/s11270-018-3937-4.
  36. Kowalczewska-Madura, K., Gołdyn, R. & Dondajewska, R. (2011). Phosphorus release from the bottom sediments of Lake Rusałka (Poznań, Poland). Oceanological and Hydrobiological Studies, 38, 4, pp. 135-144. DOI:10.2478/VI00009-010-0046-0.
  37. LAWA – Länder-Arbeitsgemeinschaft Wasser. Beurteilung der Wasserbeschaffenheit von Fließgewässern in der Bundesrepublik Deutschland – chemische Gewässergüteklassifi kation. Zielvorgaben zum Schutz oberirdischer Binnengewässer, Berlin, Germany, Band 2, 10, pp. 1–26.
  38. Lidell, M., Bremle, G., Broberg, O. & Larsson, P. (2001). Monitoring of persistent organic pollutants (POPs): examples from Lake Väner, Sweden. Ambio 30, 8, pp. 545-551. DOI:10.1579/0044-7447-30.8.545.
  39. Liu, B., Xu, H., Lan, J., Sheng, E., Che, S. & Zhou, X. (2014). Biogenic silica contents of Lake Quinghai sediments and its environmental significance. Frontiers of Earth Science, 8, 4, pp. 573-581. DOI:10.1007/s11707-014-0440-0.
  40. Liu, D., Yuan, P., Tian, Q., Liu, H., Deng, L., Song, Y., Zhou, J., Losic, D., Zhou, J., Song, H., Guo, H. & Fan, W. (2019). Lake sedimentary biogenic silica from diatoms constitutes a significant global sink for aluminium. Nature Communications, 10, pp. 4829. DOI:10.1038/s41467-019-12828-9.
  41. Łopata, M. (2010). Water-legal survey for the introduction of substances inhibiting the growth of algae to the waters of Domowe Duże and Domowe Małe lakes in Szczytno in connection with the planned reclamation of the lakes using the phosphorus inactivation method. Typescript. (in Polish)
  42. Mamindy-Pajany, Y., Hamer, B., Romeo, M., Geret, F., Galgani, F., Durmisi, E., Hurel, Ch. & Marmier, N. (2011). The toxicity of composed sediments from Mediterranean ports evaluated by several bioassays. Chemosphere, 82, 3, pp. 362-369. DPO:10.1016/j.chemosphere.2010.10.005.
  43. Migaszewski, Z.M. & Gałuszka, A. (2003). Outline of environmental geochemistry. Publishing of the Świętokrzyska Academy, Kielce, Poland.(in Polish)
  44. Nasr, S.M., Okbah, M.A. & Kasem, S.M. (2006). Environmental assessment of heavy metal pollution in bottom sediments of Aden Port, Yemen. International Journal of Oceans and Oceanography, 1, 1, pp. 99-109.
  45. Ordinance of the Ministry of the Environment of 1 September 2016 on the method of conducting an assessment of the soil surface pollution. Journal of Laws of 2016, item 1395. (in Polish)
  46. Ordinance of the Ministry of the Environment of 11 May 2015 on the recovery of waste outside installations and equipment. Journal of Laws of 2015, item 796. (in Polish)
  47. Piaścik, H. (1996). Geological and geomorphological conditions of the Masurian Lake District and the Sępopolska Plain. Problem Journals of the Progress of Agricultural Sciences, 431, pp. 31-45. (in Polish)
  48. Piasecki, D. (1960). Geological and morphological sketch of the Radunia river basin. Annals of the Polish Geological Society, XXIX, 4, pp. 385-394. (in Polish)
  49. Planter, M., Jędrychowska, G. & Łaźniewski, J. (2005). Assessment of the purity of the Bartąg, Domowe Duże, Domowe Małe and Ukiel lakes according to the research from 2004. VIEP Olsztyn, 30, 2, pp. 1-5. (in Polish)
  50. Pohl, A., Kostecki, M., Jureczko, I., Czaplicka, M. & Łozowski, B. (2018). Polycyclic aromatic hydrocarbons in water and bottom sediments of a shallow, lowland dammed reservoir (on the example of reservoir Blachownia, South Poland). Archives of Environment Protection, 44, 1, pp. 10-23. DOI:10.24425/118177.
  51. Prosowicz, D. (2008). Metals in bottom sediments of Wigry Lake. Geologia, 34, pp. 85–108. (in Polish)
  52. Ripl, W. (1976a). Biochemical oxidation of polluted lake sediment with nitrate. A new restoration method. Ambio, 5, pp. 132–135.
  53. Ripl, W. (l976b). Prozeßsteuerung in geschädigten See-Ökosystemen. Vierteljahresschrift der Naturforschenden Gesell-schaft Zürich, 121, pp. 301–308.
  54. Roden, E.& Emonds, J. (1997). Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Archive fur Hydrobiologie, 139, 3, pp. 347-378. DOI:10.1127/archiv-hydrobiol/139/1997/347.
  55. Sanders, G., Hamilton-Taylor, J. & Jones, K.C. (1996). PCB and PAH dynamics in a small rural lake. Environmental Science and Technology, 30, 10, pp. 2958-2966. DOI:10.10.21/es9509240.
  56. Sojka, M., Jaskuła, J. & Siepak, M. (2018). Heavy metals in bottom sediments of reservoirs in the lowland area of Western Poland: concentrations, distribution, sources and ecological risk. Water, 11, pp. 56. DOI:10.3390/w11010056.
  57. Stogiannidis, E. & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. In: Whitacre, D.M. (ed.) Reviews of environmental contamination and toxicology. Springer International Publishing, Switzerland, 234, pp. 49-133.
  58. Tibco Software Inc. STATISTICA version 13.0 2018.
  59. Waisberg, M., Joseph, P., Hale, B. & Beyersmann, D. (2003). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 192, (2-3), pp. 95–117. DOI:10.1016/s0300-483x(03)00305-6.
  60. Wakida, F.T., Lara-Ruiz, D., Temores-Pen, J., Rodriguez-Ventura, J.G., Diaz, C. & Garcia-Flores, E. (2008). Heavy metals in sediments of the Tecate River, Mexico. Environmental Geology, 54, 3, pp. 637-642. DOI:10.1007/s00254-007-0831-6.
  61. Wang, X., Zhang, L., Zhao, Z. & Cai, Y. (2018). Heavy metal pollution in reservoir in the hilly area of southern China: Distribution, source apportionment and health risk assessment. Science of the Total Environment, 634, pp. 158-169. DOI:10.1016/j.scitotenv.2018.03.340.
  62. Wilson, D.C. (2018). Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States. Science of the Total Environment, 621, pp. 95-107. DOI:10.1016/j.scitotenv.2017.11.223.
  63. Wróbel, P. (2012). Elaboration of bathymetry and morphometric chart of the Lake Domowe Małe. Typescript. (in Polish)
  64. Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D. & Sylvestre, S. (2002). PAH in the Fraser River basin: a critical appraisal of PAH ratios as indicator of PAH source and composition. Organic Geochemistry, 33, pp. 489-515. DOI:10.1016/s0146-6380(02)00002.
  65. Zamparas, M. & Zacharias, I. (2014). Restoration of eutrophic freshwater by managing internal nutrient loads. Science of the Total Environment, 496, pp. 551-562. DOI:10.1016/j.scitotenv.2014.07.076.
Go to article

Authors and Affiliations

Jolanta Katarzyna Grochowska
1
ORCID: ORCID
Renata Tandyrak
1
Renata Augustyniak
1
ORCID: ORCID
Michał Łopata
1
Dariusz Popielarczyk
1
ORCID: ORCID
Tomasz Templin
1
ORCID: ORCID

  1. University Warmia and Mazury in Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

In recent years, infections are more often caused by pathogens with high multi-drug resistance, classified as the “ESKAPE” microorganisms. Therefore, investigation of these pathogens, e.g., Klebsiella pneumoniae, often requires biomass production for treatment testing such as antibiotics or bacteriophages. Moreover, K. pneumoniae can be successfully applied as a biocatalyst for other industrial applications, increasing the need for this bacteria biomass. In the current study, we proposed a novel magnetically assisted bioreactor for the cultivation of K. pneumoniae cells in the presence of an external alternating magnetic field (AMF). High efficiency of the production requires optimal bacteria growth conditions, e.g., temperature and field frequency. Therefore, we performed an optimization procedure using a central composite design for these two parameters in a wide range. As an objective function, we utilized a novel, previously described growth factor that considers both biomass and bacteria growth kinetics. Thus, based on the response surface, we could specify the optimal growth conditions. Moreover, we analysed the impact of the AMF on bacteria proliferation, which indicated positive field frequency windows, where the highest stimulatory effect of AMF on bacteria proliferation occurred. Obtained results proved that the magnetically assisted bioreactor could be successfully employed for K. pneumoniae cultivation.
Go to article

Authors and Affiliations

Maciej Konopacki
1 2
ORCID: ORCID
Adrian Augustyniak
1 3
ORCID: ORCID
Bartłomiej Grygorcewicz
1 2
ORCID: ORCID
Barbara Dołęgowska
2
ORCID: ORCID
Marian Kordas
1
ORCID: ORCID
Rafał Rakoczy
1
ORCID: ORCID

  1. West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
  2. Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland
  3. Technische Universität Berlin, Building Materials and Construction Chemistry, Gustav-Meyer Allee 25,13355 Berlin, Germany
Download PDF Download RIS Download Bibtex

Abstract

We demonstrate in this study that a rotating magnetic field (RMF) and spinning magnetic particles using this kind of magnetic field give rise to a motion mechanism capable of triggering mixing effect in liquids. In this experimental work two mixing mechanisms were used, magnetohydrodynamics due to the Lorentz force and mixing due to magnetic particles under the action of RMF, acted upon by the Kelvin force. To evidence these mechanisms,we report mixing time measured during the neutralization process (weak acid-strong base) under the action of RMF with and without magnetic particles. The efficiency of the mixing process was enhanced by a maximum of 6.5% and 12.8% owing to the application of RMF and the synergistic effect of magnetic field and magnetic particles, respectively.
Go to article

Bibliography

Baldyga J., Bourne J.R., 1988. Calculation of micromixing in inhomogenous stirred tank reactors. Chem. Eng. Res. Des., 66(1), 33–38.

Baldyga J., Bourne J.R., 1992. Interactions between mixing on various scales in stirred tank reactors. Chem. Eng. Sci., 47, 1839–1848. DOI: 10.1016/0009-2509(92)80302-S.

Bałdyga J., Pohorecki R., 2013. Editorial. 14th European Conference on Mixing. Chem. Eng. Res. Des., 91(11), 2071–2072). DOI: 10.1016/j.cherd.2013.10.021.

Bao S.R., Zhang R.P., Rong Y., Zhi X.Q., Qiu L.M., 2019. Interferometric study of the heat and mass transfer during the mixing and evaporation of liquid oxygen and nitrogen under non-uniform magnetic field. Int. J. Heat Mass Transfer, 136, 10–19. DOI: 10.1016/j.ijheatmasstransfer.2019.02.044.

Boroun S., Larachi F., 2016. Role of magnetic nanoparticles in mixing, transport phenomena and reaction engineering – challenges and opportunities. Curr. Opin. Chem. Eng., 13, 91–99. DOI: 10.1016/j.coche.2016.08.011.

Boulware J.C., Ban H., Jensen, S., Wassom S., 2010. Influence of geometry on liquid oxygen magnetohydrodynamics. Exp. Therm Fluid Sci., 34, 1182–1193. DOI: 10.1016/j.expthermflusci.2010.04.007.

Chen X., Zhang L., 2019. A review on micromicers acuated with magnetic nanomaterials. Microchim Acta, 184, 3639–3649. DOI: 10.1007/s00604-017-2462-2.

Davidson P.A., 1999. Magnetohydrodynamics in materials processing. Annu. Rev. Fluid Mech., 31, 273–300. DOI: 10.1146/annurev.fluid.31.1.273.

Davidson P.A., 2001. An introduction to magnetohydrodynamics. Cambridge Uniwversity Press. DOI: 10.1017/CBO9780511626333.

Ergin F.G.,Watz B.B., Erglis K., Cebers A., 2015. Time-resolved velocity measurements in a magnetic micromixer. Exp. Therm Fluid Sci., 67. DOI: 10.1016/j.expthermflusci.2015.02.019.

Gao Y., 2013. Active mixing and catching using magnetic particles. Phd Thesis. Technische Universiteit Eindhoven. DOI: 10.6100/IR759475.

Gopalakrishnan S., Thess A., 2010. Chaotic mixing in electromagnetically controlled thermal convection of glass melt. Chem. Eng. Sci., 65, 5309–5319. DOI: 10.1016/j.ces.2010.07.008.

Hajiani P., Larachi F., 2014. Magnetic-field assisted mixing of liquids using magnetic nanoparticles. Chem. Eng. Process., 84, 31–37. DOI: 10.1016/j.cep.2014.03.012.

Hajiani P, Larachi F., 2013. Remotely excited magnetic nanoparticles and gas–liquid mass transfer in Taylor flow regime. Chem. Eng. Sci., 93, 257–265. DOI: 10.1016/j.ces.2013.01.052.

Hao Z., Zhu Q., Jiang Z., Li H., 2008. Fluidization characteristics of aerogel Co/Al2O3 catalyst in a magnetic fluidized bed and its application to CH4-CO2 reforming. Powder Technol., 183, 46–52. DOI: 10.1016/j.powtec.2007.11.015.

Harnby N., Edwards M.F., Nienow A.W., 1985. Mixing in the process industries. Butterworth-Heinemann. DOI: 10.1016/b978-0-7506-3760-2.x5020-3.

Hausmann R., Reichert C., Franzreb M., HöllW.H., 2004. Liquid-phase mass transfer of magnetic ion exchangers in magnetically influenced fluidized beds: II. AC fields. React. Funct. Polym., 60, 17–26. DOI: 10.1016/j.reactfunct polym.2004.02.007.

Hristov J., 2002. Magnetic field assisted fluidization – a unified aproach Part 1. Fundamentals and relevant hydrodynamics of gas-fluidized beds (batch solids mode). Rev. Chem. Eng., 18, 295–512. DOI: 10.1515/REVCE.2002.18.4-5.295.

Hristov J., 2007. Magnetic field assisted fluidization-Dimensional analysis addressing the physical basis. China Particuology, 5, 103–110. DOI: 10.1016/j.cpart.2007.03.002.

Hristov J., 2010. Magnetic field assisted fluidization – A unified approach. Part 8. Mass transfer: Magnetically assisted bioprocesses. Rev. Chem. Eng., 26, 55–128. DOI: 10.1515/REVCE.2010.006.

Hristov J.Y., 1998. Fluidization of ferromagnetic particles in a magnetic field Part 2: Field effects on preliminarily gas fluidized bed. Powder Technol., 97, 35–44. DOI: 10.1016/S0032-5910(97)03392-5.

Krakov M.S., 2020. Mixing of miscible magnetic and non-magnetic fluids with a rotating magnetic field. J. Magn. Magn. Mater., 498. DOI: 10.1016/j.jmmm.2019.166186.

Lange A., 2002.Kelvin force in a layer of magnetic fluid. J. Magn. Magn. Mater., 241, 327–329. DOI: 10.1016/S0304 -8853(01)01368-3.

Lu X., Li H., 2000. Fluidization of CaCO3 and Fe2O3 particle mixtures in a transverse rotating magnetic field. Powder Technol., 107, 66–78. DOI: 10.1016/S0032-5910(99)00092-3.

Moffatt H.K., 1965. On fluid flow induced by a rotating magnetic field. J. Fluid Mech., 22, 521–528. DOI: 10.1017/S0022112065000940.

Moffatt H.K., 1990. On the behaviour of a suspension of conducting particles subjected to a time-periodic magnetic field. J. Fluid Mech., 218, 509–529. DOI: 10.1017/S0022112090001094.

Moffatt H.K., 1991. Electromagnetic stirring. Phys. Fluids A, 3, 1336–1343. DOI: 10.1063/1.858062.

Molokov S., Moreau R., Moffat H.K., 2007. Magnetohydrodynamics. Historical evolution and trends. Springer Science+Business Media B.V. DOI: 10.1007/978-1-4020-4833-3.

Nouri D., Zabihi-Hesari A., Passandideh-Fard M., 2017. Rapid mixing in micromixers using magnetic field. Sens. Actuators, A, 255, 79–86. DOI: 10.1016/j.sna.2017.01.005.

Olivier G., Pouya H., Fadçal L., 2014. Magnetically induced agitation in liquid–liquid–magnetic nanoparticle emulsions: Potential for process intensification. AIChE J., 60, 1176–1181. DOI: 10.1002/AIC.14331.

Penchev I.P., Hristov J.Y., 1990. Fluidization of beds of ferromagnetic particles in a transverse magnetic field. Powder Technol., 62, 1–11. DOI: 10.1016/0032-5910(90)80016-R.

Poulsen B.R., Iversen J.J.L., 1997. Mixing determinations in reactor vessels using linear buffers. Chem. Eng. Sci., 52, 979–984. DOI: 10.1016/S0009-2509(96)00466-6.
Go to article

Authors and Affiliations

Rafał Rakoczy
1
ORCID: ORCID
Marian Kordas
1
ORCID: ORCID
Agata Markowska-Szczupak
1
ORCID: ORCID
Maciej Konopacki
1
ORCID: ORCID
Adrian Augustyniak
1
ORCID: ORCID
Joanna Jabłońska
1
Oliwia Paszkiewicz
1
ORCID: ORCID
Kamila Dubrowska
1
Grzegorz Story
1
Anna Story
1
Katarzyna Ziętarska
1
Dawid Sołoducha
1
Tomasz Borowski
1
Marta Roszak
2
Bartłomiej Grygorcewicz
2
ORCID: ORCID
Barbara Dołęgowska
2
ORCID: ORCID

  1. West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42,71-065 Szczecin, Poland
  2. Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland

This page uses 'cookies'. Learn more