Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present work deals with agitation of non-Newtonian fluids in a stirred vessel by Scaba impellers. A commercial CFD package (CFX 12.0) was used to solve the 3D hydrodynamics and to characterise at every point flow patterns especially in the region swept by the impeller. A shear thinning fluid with yield stress was modelled. The influence of agitator speed, impeller location and blade size on the fluid flow and power consumption was investigated. The results obtained are compared with available experimental data and a good agreement is observed. It was found that an increase in blade size is beneficial to enlargement of the well stirred region, but that results in an increased power consumption. A short distance between the impeller and the tank walls limits the flow around the agitator and yields higher power consumption. Thus, the precise middle of the tank is the most appropriate position for this kind of impeller.

Go to article

Authors and Affiliations

Houari Ameur
Mohamed Bouzit
Mustapha Helmaoui
Download PDF Download RIS Download Bibtex

Abstract

Knowledge of the fluid dynamic characteristics in a stirred vessel is essential for reliable design and scale-up of a mixing system. In this paper, 3D hydrodynamics in a vessel agitated by a Rushton turbine were numerically studied (with the help of a CFD computer program (CFX 13.0)). The study was carried out covering a wide Reynolds number range: 104 - 105. Computations, based on control volume method, were made using the k-ε model. Our main purpose was to investigate the effect of vessel configuration and agitation rates on the flow structure and power consumption. Three types of vessels were used: unbaffled, baffled and a vessel with slots placed at the external perimeter of its vertical wall. The effect of slot length has been investigated. The comparison of our predicted results with available experimental data shows a satisfactory agreement.

Go to article

Authors and Affiliations

Sarra Youcefi
Mohamed Bouzit
Houari Ameur
Youcef Kamla
Abdelkader Youcefi

This page uses 'cookies'. Learn more