Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aims of the current study are the physicochemical characterization, spatial assessment and monitoring of hydrocarbon contamination in quagmire of three sites (Agreb, Gassi and Zotti) in the Hassi Messaoud region (Algerian Sahara), as a result of the presence of an important oil industry rejecting industrial wastewater. Samples were obtained from three different depths for each site. Total Hydrocarbons (THC) were determined by a gravimetric method, and the four (F1:C6-C10), (F2:C10-C16), (F3:C16-C34) and F4>C34) hydrocarbon fractions and BTEX (Benzene, Toluene, Ethyl-benzene and Xylene) were determined by using gas chromatography (FID). The results obtained show a high contamination with hydrocarbons in different sites and depths. The concentrations of THC, four hydrocarbon fraction and BTEX recorded on Agreb site in different depth were in this order: 51200–120000 mg/kg d.w.; <LOD – 59500 mg/kg d.w.; 2.4–90.8 mg/kg d.w. respectively; and for Gassi site, in this order: 59600–70300 mg/kg d.w.; < LOD – 43000 mg/kg d.w.; 8.5–112 mg/kg d.w. Finely they were in the following order: 18100–19200 mg/kg d.w.; <LOD – 9130 mg/kg d.w.; 2.75–65 mg/kg d.w. for Zotti site. Statistical analysis demonstrated an important site effect of THC and the three hydrocarbon fractions except for F4. However, there is no site and depth effect for BTEX. On the other hand the depth effect is significant just for THC, F1 and F2 of hydrocarbons. This variation can be attributed to the difference of physicochemical parameters between studied sites.
Go to article

Bibliography

  1. Adebiyi, F. M. & Afedia, M. O. (2011). The ecological impact of used petrochemical oils on soil properties with special reference to physicochemical and total petroleum hydrocarbon contents of soils around automobile repair workshops. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 33 No. 16, pp. 1556-1565. DOI:10.1080/15567030903397883
  2. Alvarez, P. J. J. & Illman, W. A. (2005). Bioremediation and Natural Attenuation: Process Fundamentals and Mathematical Models, 1st ed., Wiley-Interscience, New Jersy. DOI:10.1002/047173862x
  3. Arocena, J. M. & Rutherford, P. M. (2005). Properties of hydrocarbon- and salt contaminated flare pit soils in northeastern British Columbia (Canada). Chemosphere, Vol. 60, pp. 567-575. DOI:10.1016/J.CHEMOSPHERE.2004.12.077
  4. Baumard, P., Budzinski, H., & Garrigues, P. (1998). Polycyclic aromatic hydrocarbons in sediments and smusels of the western Mediterranean sea. Environmental Toxicology and Chemistry, Vol. 17, pp.765–776. DOI:10.1002/ETC.5620170501
  5. Belahmadi, M. S. O., Abdessemed, A., Gherib, A., Charchar, N., Houali, K. & Houhamdi, M. (2021). Spatiotemporal assessment and monitoring of hydrocarbons contamination of water and sediments in skikda bay (Algeria). International Journal of Environmental Analytical Chemistry, pp. 1-19. DOI:10.1080/03067319.2021.1879801
  6. CCME (2001). Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in soil. CCME Council of Ministers.
  7. Clark, J.D., Serdar, B., Lee, D.J., Arheart, K., Wilkinson, J.D. & Fleming, L.E. (2012). Exposure to polycyclic aromatic hydrocarbons and serum inflammatory markers of cardiovascular disease. Environmental Research, Vol. 117, pp. 132-137. DOI:10.1016/j.envres.2012.04.012
  8. Colin C. (2000). Localized pollution of soils and subsoils by hydrocarbons and chlorinated solvents. Report of the Academy of Sciences n° 44, Technique and Documentation, 1st ed., Lavoisier, Paris.
  9. Fusey, P. & Oudot, J. (1973). Note sur l’accélération de la biodégradation d’un pétrole brut par des bactéries. Material Organismen, Vol. 8, pp. 158-163.
  10. Fusey, P. & Oudot, J. (1976). Comparaison de deux méthodes d’évaluation de la biodégradation des hydrocarbures in vitro. Material Organismen. Vol. 4, pp. 241-251.
  11. Fusey, P., Lampin, M.F. & Oudot, J. (1981). Recherche sur l’élimination des hydrocarbures par voie biologique. Material Organismen. Vol. 2, pp. 109.
  12. Greene, E.A., Kay, J.G., Jaber, K., Stehmeier, L.G. & Voordouw, G. (2000). Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Applied and Environmental Microbiology, Vol. 66, pp. 5282-5289.
  13. Jiang, Z., Huang, Y., Xu, X., Liao, Y., Shou, L., Liu, J., Quan-zhen, C. & Zeng J. (2010). Advance in the toxic effects of petroleum water accommodated fraction on marine plankton. Acta Ecologica Sinica, Vol. 30, pp. 8-15. DOI:10.1128/AEM.66.12.5282-5289.2000. DOI:10.1016/J.CHNAES.2009.12.002
  14. Jung, K.H., Hsu, S.-I., Yan, B., Moors, K., Chillrud, S.N., Ross, J. & Wang, S. (2012). Childhood exposure to fine particulate matter and black carbon and the development of new wheeze between ages 5 and 7 in an urban prospective cohort. Environment International, Vol. 45, pp. 44-50. DOI:10.1016/j.envint.2012.03.012
  15. Khairy, M.A., Weinstein, M.P. & Lohmann, R. (2014). Trophodynamic behavior of hydrophobic organic contaminants in the aquatic food web of a Tidal Rive. Environmental Science & Technology, Vol. 48, pp. 12533–12542. DOI:10.1021/es502886n
  16. Langlois, P.H., Hoyt, A.T., Lupo, P.J., Lawson, C.C., Waters, M.A., Desrosiers, T.A., Shaw, G.M., Romitti, P.A. & Lammer, E.J. (2013). Maternal occupational exposure to polycyclic aromatic hydrocarbons and risk of oral cleft-affected pregnancies. The Cleft Palate-Craniofacial Journal, Vol. 50, pp. 337-346. DOI:10.1597/12-104
  17. Mauricio-Gutiérrez A., Machorro-Velázquez, R., Jiménez-Salgado, T., Vázquez-Crúz, C. & Sánchez-Alonso, M.P. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils. Archives of Environmental Protection, Vol. 46, pp. 59-69. DOI:10.24425/aep.2020.135765
  18. Moscoso, F., Deive, F.J., Longo, M.A., & Sanromán, M.A. (2012). Technoeconomic assessment of phenanthrene degradation by Pseudomonas stutzeri CECT 930 in a batch bioreactor. Bioresource Technology, Vol. 104, pp. 81-89. DOI:10.1016/j.biortech.2011.10.053
  19. Mozo, I., Stricot, M., Lesage, N. & Spérandio, M. (2011). Fate of hazardous aromatic substances in membrane bioreactors. Water research, Vol. 45, pp. 4551-4561. DOI:10.1016/j.watres.2011.06.005
  20. Neff, J., M., Ostazeski, S., Gardiner W. & Stejskal, I. (2000). Effects of weathering on the toxicity of three off shore Australian crude oils and a diesel fuel to marine animals. Environmental Toxicology and Chemistry, Vol. 19, No. 7, pp. 1809-1821. DOI:10.1002/ETC.5620190715
  21. Official Journal of the Algerian Republic (OJAR). Number 36, April 2006. Limit values of industrial liquid effluent discharge parameters.
  22. Ozcan, S. & Aydin, M. E. (2009). Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in urban air of Konya, Turkey. Atmospheric Research, Vol. 93, pp. 715–722. DOI:10.1016/J.ATMOSRES.2009.02.012
  23. Paliulis, D. (2021). Experimental investigations of dynamic sorption of diesel from contaminated water. Archives of Environmental Protection, Vol. 47, pp. 30-39. DOI:10.24425/aep.2021.139500
  24. Park, J.H., Zhao, X. & Voice, T.C. (2001). Biodegradation of non-desorbable naphthalene in soils. Environmental Science and Technology, Vol. 35, pp. 2734-2740. DOI:10.1021/ES0019326
  25. Ping, L., Zhang, C., Zhu, Y., Wu, M., Hu, X., Li, Z. & Zhao, H. (2011). Biodegrading of pyrene by a newly isolated Pseudomonas putida PL2. Biotechnology and Bioprocess Engineering, Vol. 16, No. 5, pp. 1000–1008. DOI:10.1007/S12257-010-0435-Y
  26. Rosa, M.J., Jung, K.H., Perzanowski, M.S., Kelvin, E.A., Darling, K.W., Camann, D.E. & Chillrud, S.N. (2011). Prenatal exposure to polycyclic aromatic hydrocarbons, environmental tobacco smoke and asthma. Respiratory Medicine, Vol. 105, pp. 869-876. DOI:10.1016/j.rmed.2010.11.022
  27. Rota, M., Bosetti, C., Boccia, S., Boffetta, P. & La Vecchia, C. (2014). Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers: An updated systematic review and a meta-analysis to 2014. Archives of Toxicology, Vol. 88, pp. 1479-1490. DOI: 10.1007/s00204-014-1296-5
  28. Vuruna, M., Veličković, Z., Perić, S., Bogdanov, J., Ivanković, N. & Bučko, M. (2017). The influence of atmospheric conditions on the migration of diesel fuel spilled in soil. Archives of Environmental Protection, Vol. 43, pp. 73-79. DOI:10.1515/aep-2017-0004
  29. Xu, X.H., Cook, R.L., Ilacqua, V.A., Kan, H.D., Talbott, E.O. & Kearney, G. (2010). Studying associations between urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases in the United States. Science of the Total Environment, Vol. 408, pp. 4943-4948. DOI:10.1016/j.scitotenv.2010.07.034
  30. Zappelini, C., Alvarez-Lopez, V., Capelli N., Guyeux, C. & Chalot, M. (2018). Streptomyces Dominate the Soil Under Betula Trees That Have Naturally Colonized a Red Gypsum Landfill. Frontiers in Microbiology, Vol. 9, pp. 1772. DOI:10.3389/fmicb.2018.01772
Go to article

Authors and Affiliations

Samia Kout
1
Abdessemed Ala
2
ORCID: ORCID
Mohamed Seddik Oussama Belahmadi
2
Amina Hassaine
1
Ouahiba Bordjiba
1
Ali Tahar
1

  1. Université Badji Mokhtar-Annaba Faculté des Sciences Département de Biologie, Algeria
  2. Biotechnology Research Centre (C.R.Bt), Algeria

This page uses 'cookies'. Learn more