Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An analysis of the effect of feed foaming on the efficiency of sunflower oil encapsulation on selected product properties is presented in the paper. Experiments were carried out in a pilot-plant concurrent spray dryer using the gas-admixing technique. The analysis of the product properties showed that the application of foaming makes it possible to control final product properties, e.g. apparent density, bulk density, distribution of particle diameters, etc. at a high efficiency of sunflower oil encapsulation.

Go to article

Authors and Affiliations

Artur Lewandowski
Marcin Czyżewski
Ireneusz Zbiciński
Download PDF Download RIS Download Bibtex

Abstract

In this article the structural and mechanical properties of grain refinement of Cu-Sn alloys with tin content of 10%, 15% and 20% using the KOBO method have been presented. The direct extrusion by KOBO (name from the combination of the first two letters of the names of its inventors – A. Korbel and W. Bochniak) method employs, during the course of the whole process, a phenomenon of permanent change of strain travel, realized by a periodical, two-sided, plastic metal torsion. Moreover the aim of this work was to study corrosion resistance. The microstructure investigations were performed using an optical microscope Olimpus GX71, a scanning electron microscope (SEM) and a scanning transmission electron microscope (STEM). The mechanical properties were determined with INSTRON 4505/5500 machine. Corrosion tests were performed using «Autolab» set – potentiostat/galvanostat from EcoChemie B.V. with GPES software ver. 4.9. The obtained results showed possibility of KOBO deformation of Cu-Sn casting alloys. KOBO processing contributed to the refinement of grains and improved mechanical properties of the alloys. The addition of tin significantly improved the hardness. Meanwhile, with the increase of tin content the tensile strength and yield strength of alloys decrease gradually. Ductility is controlled by eutectoid composition and especially δ phase, because they initiate nucleation of void at the particle/matrix interface. No significant differences in the corrosion resistance between cast and KOBO processed materials were found.

Go to article

Authors and Affiliations

J. Sobota
K. Rodak
M. Nowak
Download PDF Download RIS Download Bibtex

Abstract

Leon Król (1842 -1927) was born at Rogalin near Kórnik to the family of the manor administrator of Count Raczyński and was educated to become a saddler and harness-maker in Kórnik, Poznan, and Łowicz. In 1863, Leon joined Leon Young’s insurgent detachment. After the defeat suff ered by Brdów on 29 May, he subsequently came under the command of Alojzy Seyfried, Ludwik Oborski, and Edmund Taczanowski. He fought in the battles of Babsk (17 May), Niewiesz (23 May), Sędziejowice (26 August; it was here that he rendered outstanding services), and Kruszyna (29 August), where Taczanowski’s detachment was finally smashed. He then participated in insurgent gendarmerie actions at Łask and Szadek, and in the battle of Jeżew on 5 December 1863. Having returned to his family area, he was subsequently punitively conscripted into the Prussian army, served in several campaigns, and finally settled at Kórnik. After Poland regained independence in 1918, Leon Król was promoted to the rank of a lieutenant, received a uniform as a military veteran, and participated in the production of one of the first Polish historical fi lms. Many of his descendants still live in Kórnik today. The text of his unfi nished memories of 1863, written in 1911, has survived in the Kórnik Library in the form of a typescript copy, and was edited by Stanisława Andrejewska.

Go to article

Authors and Affiliations

Leon Król
Download PDF Download RIS Download Bibtex

Abstract

Characterization of angular leaf spot (ALS) disease of beans caused by Pseudocercospora griseola (Sacc.) Crous & Braun along with its occurrence was investigated using 118 isolates obtained from beans grown in greenhouses in the western Black Sea region of Turkey. Incidences of ALS disease ranged between 77–100% and 82–100% for summer and autumn sown bean cultivations while the disease severity was in the ranges of 66–82% and 74–86% for the same periods, respectively. All of the 118 isolates of P. griseola yielded 500–560 bp PCR products from ITS1 and ITS4 primers, while 45 isolates yielded 200–250 bp products from actin genes primer and 5 isolates yielded 300–350 bp from calmodulin primer. The form of the Turkish isolates of P. griseola was determined as f. griseola since ITS sequences of 118 isolates of P. griseola showed between 98–100% similarity to the isolates of P. griseola f. griseola deposited in GenBank and our isolates took place on the same branch on the phylogenetic tree formed by the representative isolates in GenBank. The actin sequences did not give a clear differentiation for the forms of P. griseola. The phylogenetic trees generated by ITS1, ITS2 and actin genes formed similar branches. Each had two main clade and similar sub clades.
Go to article

Bibliography

1. Abadio A.K.R., Lima S.S., Santana M.F., Salamao T.M.F., Sartorato A., Mizubuti E.S.G., Araujo E.F., Queiroz de M.V. 2012. Genetic diversity analysis of isolates of the fungal bean pathogen Pseudocercospora griseola from central and southern Brazil. Genetics and Molecular Research 11 (2): 1272–1279. DOI: 10.4238/2012.May.14.1
2. Bora T., Karaca İ. 1970. Kültür Bitkilerinde Hastalığın ve Zararın Olçülmesi. [Measurement of Disease and Damage in Cultivated Plants]. Ege University, Faculty of Agriculture Auxiliary Textbook, No. 167. (in Turkish).
3. Canpolat S., Maden S. 2017. Determination of the inoculum sources of angular leaf spot disease caused by Pseudocercospora griseola, on common beans. Plant Protection Bulletin 57 (1): 39–47 (in Turkish with English abstract). DOI: 10.16955/bitkorb.299016, ISSN 0406-3597
4. Canpolat S., Maden S. 2020. Reactions of some common bean cultivars grown in Turkey against some isolates of angular leaf spot disease, caused by Pseudocercospora griseola. Plant Protection Bulletin 60 (2): 45–54. (in Turkish with English abstract). DOI: 10.16955/bitkorb.630968
5. Chilagane L.A., Nchimbi-Msolla S., Kusolwa P.M., Porch T.G., Diaz L.M.S., Tryphone G.M. 2016. Characterization of the common bean host and Pseudocercospora griseola, the causative agent of angular leaf spot disease in Tanzania. African Journal of Plant Science 10 (11): 238–245. DOI: https://doi.org/10.5897/AJPS2016.1427
6. Crous P.W., Lienbenberg M.M., Braun U., Groenewald J.Z. 2006. Re-evaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Studies in Mycology 55 (1): 163–173. DOI: 10.3114/sim.55.1.163
7. Ddamulira G., Mukankusi C.M., Ochwo-Ssemakula M., Edema R., Sseruwagi P., Gepts P.L. 2014. Distribution and variability of Pseudocercospora griseola in Uganda. Journal of Agricultural Science 6 (6): 16–29. DOI: 10.5539/jas.v6n6p16
8. Nay M.M., Souza T.L.P.O., Gonçalves-Vidigal M.C., Raatz B., Mukankusi C.M., Gonçalves-Vidigal M.C., Abreu A.F.B., Melo L.C., Pastor-Corrales M.A. 2019. A review of angular leaf spot resistance in common bean. Crop Science 59: 1376–1391. DOI: 10.2135/cropsci2018.09.0596
9. Sartorato A. 2004. Pathogenic variability and genetic diversity of Phaeoisariopsis griseola isolates from two counties in the State of Goias, Brazil. Journal of Phytopathology 152: 385–390.
10. Schoonhoven A., Pastor-Corrales M.A. 1987. Standard system for the evaluation of bean germplasm. Centro Internacional de Agricultura Tropical, CIAT Apartado Areo 6713 Cali, Colombia, p.56.
11. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA 6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30 (12): 2725.
12. Townsend G.K., Heuberger J.W. 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Report 27: 340–343.
13. Viguiliouk E., Mejia S.B., Kendall C.W., Sievenpiper J.L. 2017. Can pulses play a role in improving cardiometabolic health. Evidence from systematic reviews and meta‐analyses. Annuals of the New York Academy of Sciences 1392 (1): 43.
Go to article

Authors and Affiliations

Sirel Canpolat
1
Salih Maden
2

  1. Department of Phytopathology, Ankara Plant Protection Central Research Institute, Ankara, Turkey
  2. Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine the influence of reclamation on selected soil water properties in soils developed from lignite fly ash, deposited as a dry landfill, twenty years after forest reclamation was initiated. Five soil profiles, classified as technogenic soils (Technosols) within the fly ash disposal site of the Adamów (central Poland) power plant, were selected for this study. Disturbed and undisturbed samples (V=100 cm3) were collected from depths of 5–15 cm and 30–60 in each soil profile. The following physical properties were determined: particle size distribution, particle density, bulk density, soil moisture, hygroscopic water content, and the soil-water potential. Readily available water (RAW; difference of water content at pF=2.0 and at pF=3.7) and total available water (TAW; difference of water content at pF=2.0 and at pF=4.2) were calculated based on soil moisture tension (pF) values. The following chemical properties were determined: soil reaction, total organic carbon, total nitrogen content, carbonate content. Statistical analyses were conducted using the GenStat 18 statistical software package. The soils under study were characterized by very low bulk density, high total porosity, high field water capacity and maximum hygroscopicity. The RAW/TAW ratio values indicate very effective water retention in the soils, thereby ensuring a satisfactory water supply to the plants. However, statistical analysis did not show any clear trends in variability of any determined properties. The small differences in observed outcomes probably resulted from the original variability of the fly ash deposited on the studied landfill. Obtained results show the strong similarity of fly ash derived soils and Andosols in respect of physical and soil-water properties
Go to article

Bibliography

  1. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash, Prog Energ Combust, 36, 3, pp. 327-363, DOI: 10.1016/j.pecs.2009.11.003
  2. Antonkiewicz, J. (2010). Physicochemical properties of industrial waste from landfill, Rocz Glebozn - Soil Sci Ann, 61, 3, pp. 3-12. (in Polish)
  3. Bender, J. (1995). Reclamation of post-mining areas in Poland, Zesz Probl Post Nauk Roln, 418, 1, pp. 75-86. (in Polish)
  4. Bielińska, E.J. & Futa, B. (2009). Organic matter effect on biochemical transformations in anthropogenic soils in power plant ash dumping ground, Rocz Glebozn - Soil Sci Ann, 60, pp. 318-326. (in Polish)
  5. Campbell, D.J., Fox, W.E., Aitken, R.L, & Bell, L.C. (1983). Physical characteristic of sands amended with fly ash, Aust J Soil Res, 21, 2, pp.147-154, DOI:10.1071/SR9830147
  6. Dorel, L., Roger-Estrade, J., Manichon, H. & Delvaux, B. (2000). Porosity and soil water properties of Carribean volcanic ash soils, Soil Use Manage, 16, pp. 133-140, DOI: 10.1111/j.1475-2743.2000.tb00188.x
  7. Gajewski, P., Kaczmarek, Z., Owczarzak, W., Mocek, A. & Glina, B. (2015). Selected water and physical properties of soils located in the vicinity of proposed opencast lignite mine ”Drzewce” (middle Poland), Soil Sci Ann, 66, 2, pp. 75-81, DOI: 10.1515/ssa-2015-0022
  8. Gangloff, W. J., Ghodrati, M., Sims, J.T. & Vasilis, B.L. (2000). Impact of fly ash amendment and incorporation method on hydraulic properties of a sandy soil, Water Air Soil Polut, 19, pp. 231-245, DOI: 10.1023/A:1005150807037
  9. Gilewska, M. (2004). Biological reclamation of power plant lignite ash dump sites, Rocz Glebozn - Soil Sci Ann, 55, 2, pp. 103-110. (in Polish)
  10. Gilewska, M. (2006). Utilization of wastes in reclamation of post mining soils and ash dump sites, Rocz Glebozn - Soil Sci Ann, 57, 1/2, pp. 75-81. (in Polish)
  11. Gilewska, M. & Otremba, K. (2010). Impact of planting technique on reclamation of disposal site of power station incineration ash, Zesz Nauk Uniw Ziel, Inż Środ, 17, 137, pp. 86-93. (in Polish)
  12. Gilewska, M., Otremba, K. & Kozłowski, M. (2020). Physical and chemical properties of ash from thermal power station combusting lignite. A case study from central Poland, J Elem, 25, 1, 279-295. DOI: 10.5601/jelem.2019.24.4.1886
  13. Gupta, A.K., Dwivedi, S., Sinhi, S., Tripathi, R.D., Rai, U.N. & Singh, S.N. (2007). Metal accumulation and plant growth performance of Phaseolus vulgaris grown in fly ash amended soil. Bioresource Technol, 98, pp. 3404–3407. DOI:10.1016/j.biortech.2006.08.016
  14. Hartman, P., Fleige, H. & Horn, R. (2010). Water repellency of fly ash-enriched forest soils from eastern Germany, Eur J Soil Sci, 61, pp. 1070-1078, DOI: 10.1111/j.1365-2389.2010.01296x
  15. Haynes, R.J. (2009). Reclamation and revegetation of fly ash disposal sites – challenges and research, J Environ Manag, 90, pp. 43-53, DOI:10.1016/j.jenvman.2008.07.003
  16. IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps, FAO, Rome 2015.
  17. Jahn, R., Blume, H.P., Asio, V.B., Spaargaren, O. & Schad, P. (2006). Guidelines for Soil Description, FAO, Rome 2006.
  18. Jala, S. & Goyal, D. (2006). Fly ash as a soil ameliorant for improving crop production: a review, Biores Technol, 97, pp. 1136-1147, DOI:10.1016/j.biortech.2004.09.004
  19. Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł. & Waroszewski, J. (2019). Polish Soil Classification, 6th edition – principles, classification scheme and correlations, Soil Sci Ann, 70, 2, pp. 71-97, DOI:10.2478/ssa-2019-0009
  20. Kaczmarek, Z. (2011). Selected physical and water properties of mineral arable soils situated within the range of the predicted draining cone of the “Tomisławice” lignite opencast mine, Rocz Glebozn - Soil Sci Ann, 62, 2, pp. 154-164. (in Polish)
  21. Kaczmarek, Z., Gajewski, P., Owczarzak W., Mocek, A. & Glina B. (2015). Physical and water properties of selected heavy soils of various origins, Soil Sci Ann, 66, 4, pp. 191-197, DOI: 10.1515/ssa-2015-0036
  22. Kaczmarek, Z., Gajewski, P., Owczarzak, W., Glina, B. & Woźniak T. (2017). Physical and water properties of selected soils located in the area of predicted depression cone of “Tomisławice” lignite opencast mine (middle Poland), Polish J Soil Sci, 50, 2, pp. 167-176, DOI: 10.17951/pjss.2017.50.2.167
  23. Kavouridis, K. (2008). Lignite industry in Greece within a world context: Mining, energy supply and environment, Energy Policy, 36, 4, pp. 1257-1272, DOI:10.1016/j.enpol.2007.11. 017
  24. Klose, S., Koch, J., Baucker, E. & Makeschin, E. (2001). Indicative properties of fly ash affected forest soil in Northeastern Germany, J Plant Nutr Soil Sci, 164, pp. 561-568, DOI: 10.1002/1522-2624(200110)164:5561::AID-JPLN561>3.0.CO;2-9
  25. Klute, A. (1986). Water retention: Laboratory methods, in: Klute, A. (Ed.). Methods of Soil Analysis Part 1 Physical and Mineralogical Methods, ASA and SSSA, Madison Wi, pp. 635-662.
  26. Konstantinov, A.O., Novoselov, A.A. & Loiko, S.V., 2018. Special features of soil development within overgrowing fly ash deposit sites of the solid fuel power plant, Vestnik Tomskogo Gosudarstvennogo Universiteta, Biologiya, 43, pp. 6–24. DOI: 10.17223/19988591/43/1
  27. Konstantinov, A., Novoselov, A., Konstantinova, E., Loiko, S., Kurasova, A. & Minkina, T. (2020). Composition and properties of soils developed within the ash disposal areas originated from peat combustion (Tyumen, Russia), Soil Sci. Ann., 71, 1, pp. 3–14, DOI: 10.37501/soil sa/121487
  28. Krzaklewski, W., Pietrzykowski, M. & Woś, B. (2012). Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench), Ecological Enginering, 49, pp. 35-40, DOI: 10.1016/j.ecoleng.2012.08.026
  29. Maciak, F., Liwski, S. & Biernacka, E. (1976). Agricultural reclamation of lignite and hard coal waste landfills (ash). Part III. The course of soil formation processes in ash dumps under the influence of grass and papilionaceous vegetation, Rocz Glebozn - Soil Sci Ann, 27, 4, pp. 189-209. (in Polish)
  30. Maiti, S.K. & Jaiswal, S. (2008). Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India, Environmental Monitoring and Assessment, 136, pp. 355–370, DOI: 10.1007/s10661-007-9691-5
  31. Meravi, N. & Prajapati, S.K. (2019). Reclamation of fly ash dykes using naturally growing plant species, Proceedings of the International Academy of Ecology and Environmental Sciences, 9, 4, pp. 137-148.
  32. Mocek, A. (1989). Possibilities for rational management of chemically contaminated soils in industrial sanitary protection zones, Dissertation, Rocz AR Poznań, Rozpr Nauk, 185. (in Polish)
  33. Mocek-Płóciniak, A. (2018). The physicochemical and microbiochemical properties of soils developing in landfills with ash and slag from power plants, Dissertation, Wyd UPP, Rozpr Nauk, 499. (in Polish)
  34. Mohr, H. M. & Evans, G. M. (2009). Forecasting coal production until 2100, Fuel, 88, 11, pp. 2059-2067, DOI:10.1016/j.fuel.2009.01.032
  35. Neall, V.E. (2000). Volcanic soils, in: Verheye, W.H. (Ed.). Encyclopedia of land use, land cover and soil sciences, Soils and Soil Sciences (Part 2), 7, pp. 27-34, Eolss Publisher Co. Ltd./UNESCO, Oxford 2000.
  36. Pietrzykowski, M., Woś, B., Pająk, M., Wanic, T., Krzaklewski, W. & Chodak, M. (2018). Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): assessment of tree growth and nutrient status within 10 years of the experiment, Environ Sci and Pollut R, 25, pp. 17091–17099, DOI: 10.1007/s11356-018-1892-7
  37. Rosik-Dulewska, C. (2015). Basics of waste management, PWN, Warszawa 2015.
  38. Rosik-Dulewska, C., Krawczyńska, U. & Ciesielczuk, T. (2008). Leaching of PAHs from fly ash – sludge blends, Archives of Environmental Protection, 34, 3, pp. 41–47.
  39. Sokol, E.V., Maksimova, N.V., Volkova, N.I., Nigmatulina, E.N. & Frenkel, A.E. (2000). Hollow silicate microspheres from fly ashes of the Chelyabinsk brown coals (south Urals, Russia). Fuel Process. Technol., 67 (1), pp. 35–52. DOI: 10.1016/S0378-3820(00)00084-9
  40. Soil Conservation Service, (2004). Soil Survey laboratory methods manual, in: Soil Survey Invest Raport No 42, US Dept Agric Washington DC, pp. 105-195.
  41. Soil Survey Manual by Soil Survey Division Staff (2017). US Department of Agriculture, Handbook No. 18, Washington 2017.
  42. Stachowski, P., Oliskiewicz-Krzywicka, A. & Kozaczyk, P. (2013). Estimation of the Meteorological Conditions in the Area of Postmining Grounds of the Konin Region, Rocz Ochr Sr, 15, pp. 1834-1861.
  43. Strączyńska, S., Strączyński, S. & Gazdowicz, W. (2004). The influence of cover vegetation on morphological characteristics and some properties of embankment formation of furnace discards dump, Rocz Glebozn – Soil Sci Ann, 55, 2, pp. 397–404. (in Polish)
  44. Strzyszcz, Z. (2004). Assessment of the suitability and principles for the application of various wastes for the reclamation of waste dumps and areas degraded by industrial activities, Prace i Studia, Zabrze 2004.
  45. Systematyka Gleb Polski (2019). Polskie Towarzystwo Gleboznawcze, Komisja Genezy, Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław – Warszawa, pp. 235.
  46. Uehara, G. (2005). Volcanic soils, [In] Hillel, D. (Ed). Encyclopedia of Soils in the Environment, Elsevier, pp. 225-232, https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/volcanic-soils
  47. Ukwattage, L., Ranjith, P.G. & Bouazza, M. (2013). The use of coal combustion fly ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon), Fuel, 109, pp. 400-408, DOI:10.1016/fuel.2013.02.016
  48. Uzarowicz, Ł. & Zagórski., Z. (2015). Mineralogy and chemical composition of technogenic soils (Technosols) developed from fly ash and bottom ash from selected thermal power stations in Poland, Soil Sci Ann, 66, 2, pp. 82-91, DOI: 10.1515/ssa-2015-0023
  49. Uzarowicz Ł., Zagórski Z., Mendak E., Bartmiński P., Szara E., Kondras M., Oktaba L., Turek A. & Rogoziński R. (2017). Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis, Catena, 157C, pp. 75-89, DOI: 10.1016/j.catena.2017.05.010
  50. Uzarowicz, Ł., Skiba, M., Leue, M., Zagórski, Z., Gąsiński, A. & Trzciński, J. (2018a). Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II. Mineral transformations and soil evolution, Catena, 162C, pp. 255-269, DOI: 10.1016/j.catena.2017.11.005
  51. Uzarowicz, Ł., Kwasowski, W., Śpiewak, O. & Świtoniak, M. (2018b). Indicators of pedogenesis of Technosol developed in an ash settling pond at the Bełchatów thermal power station (central Poland), Soil Sci Ann, 69, 1, pp. 49-59, DOI: 10.2478/ssa-2018-0006
  52. Vassilev, S.V. & Vassileva, C.G. (1996). Mineralogy of combustion wastes from coal-fired power stations, Fuel Process Technol, 47, 3, pp. 261-280, DOI: 10.1016/0378-3820(96)01016-8
  53. Weber, J., Strączyńska, S., Kocowicz, A., Gilewska, M., Bogacz, A., Gwiżdż, M. & Dębicka, M. (2015). Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation, Catena, 13, pp: 250-254, DOI: 10.1016/j.catena.2015.05.016
  54. World Coal Association (2019). Coal use & environment, https://www.worldcoal.org/coal-electricity (30.08.2020).
  55. Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J., Ge, L.Q. & Xia, M.S. (2015). A comprehensive review on the applications of coal fly ash, Earth Sci Rev, 4, pp. 105-121, DOI: 10.1016/j.earscirev.2014.11.016
  56. Zikeli, S., Jahn, R. & Kastler, M. (2002). Initial soil development in lignite ash landfills and settling ponds in Saxony-Anhalt, Germany, J Plant Nutr Soil Sc, 165, pp. 530–536, DOI: 10.1002/1522-2624(200208)165:4530::AID-JPLN530>3.0.CO;2-J
  57. Zikeli, S., Kastler, M. & Jahn, R. (2004). Cation exchange properties of soils derived from lignite ashes, J Plant Nutr Soil Sc, 167, 4, pp. 439-448, DOI: 10.1002/jpln.200421361
  58. Żołnierz, L., Weber, J., Gilewska, M., Strączyńska, S. & Pruchniewicz, D. (2016). The spontaneous development of undestory vegetation on reclaimed and afforested post mine excavation field with fly ash, Catena, 136, pp. 84-90, DOI: 10.1016/j.catena.2015.07.013
Go to article

Authors and Affiliations

Zbigniew Kaczmarek
1
Agnieszka Mocek-Płóciniak
1
Piotr Gajewski
1
Łukasz Mendyk
1
Jan Bocianowski
1

  1. Poznań University of Life Sciences, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an assessment of the mycological air quality in classrooms of school buildings located in Lesser Poland. In 10 schools, 5 sampling points were designated: 4 indoors and 1 as an "outdoor background". A 6-stage Andersen impactor was used to collect fungal aerosol samples. During sampling, dust measurements were made (using the DustTrak II dust meter) as well as temperature and relative humidity. The predominant genera of fungi were determined by the MALDI-TOF MS method. The results indicated no statistically significant differences in indoor air fungal concentrations among the tested locations (p>0.05). The highest concentrations were observed in large classrooms (max. 2,678 CFU∙m-3), however, these differences were not statistically significant across different types of school rooms (Kruskal-Wallis test: p>0.05). All rooms exhibited similar levels of fungal aerosol contamination. Relative air humidity had a significant influence on the number of microorganisms. The most frequently isolated fungi belonged to Cladosporium, Penicillium, and Aspergillus genera. Fungal aerosol concentrations in the tested classrooms did not exceed proposed limit values for this type of indoor environment. The results suggest that natural ventilation in classrooms is insufficient to ensure adequate microbiological quality of indoor air.
Go to article

Bibliography

[1]. Auger, E.J., & Moore-Colyer, M.J.S. (2017). The effect of management regime on airborne respirable dust concentrations in two different types of horse stable design. J. Equine Vet. Sci, 51, pp.105–109. DOI:10.1016/j.jevs.2016.12.007
[2]. Augustyńska, D. & Pośniak, M. (2016). Harmful factors in the working environment: acceptable values. CIOP – PIB, Warszawa. (in Polish)
[3]. Basińska, M. & Michałkiewicz, M. (2016). Variability of microbial air pollution and dust concentration inside and outside a selected school in Poznań. Ecol. Eng. 50, pp. 17–25. DOI:10.12912/23920629/65479
[4]. Brągoszewska, E., Mainka, A., Pastuszka, J.S., Lizończyk, K. & Desta, G.Y (2018). Assessment of Bacterial Aerosol in a Preschool, Primary School and High School in Poland. Atmosphere, 9,87. DOI:10.3390/atmos9030087
[5]. Bulski, K. & Frączek, K. (2021). Mycological Air Quality at Animal Veterinary Practice. Yearbook of Environmental Protection (Rocznik Ochrona Środowiska), 23, pp. 168-179. DOI:10.54740/ros.2021.011
[6]. Canha, N., Almeida, S.M., Carmo Freitas do, C. & Wolterbeek, H.T. (2015) Assessment of bioaerosols in urban and rural primary schools using passive and active sampling methodologies. Arch. Environ. Prot. 41, pp. 11–22. DOI:10.1515/aep-2015-0034
[7]. Chegini, F.M., Baghani, A.N., Hassanvand, M.S., Sorooshian, A., Golbaz, S., Bakhtiari, R., Ashouri, A., Joubani, M.N. & Alimohammadi, M. (2020). Indoor and outdoor airborne bacterial and fungal air quality in kindergartens: Seasonal distribution, genera, levels, and factors influencing their concentration. Build Environ, 175. DOI:10.1016/j.buildenv.2020.106690
[8]. Clauß, M. (2015). Particle size distribution of airborne microorganisms in the environment – a review. Landbauforsch -·Appl. Agric. Forestry Res., 65, pp. 77-100. DOI:10.3220/LBF1444216736000
[9]. Dumała, S.M. & Dudzińska, M.R.., (2013). Microbiological Indoor Air Quality in Polish Schools. Annual Set Environ. Prot., 15, pp. 231-244.
[10]. Ejdys, E. (2009). The influence of atmospheric air on the quality of bioaerosol in school rooms in spring and autumn - mycological assessment. Ochrona Środowiska i Zasobów Naturalnych, 41, pp. 142-150. (in Polish)
[11]. Estillore, A.D., Trueblood, J.V. & Grassian, V.H. (2016). Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci., 7, pp. 6604-6616. DOI:10.1039/c6sc02353c
[12]. Eytyugina, M.G., Alves, C.A., Nunes, T. & Cerqueira, M. (2010). Outdoor/indoor air quality in primary schools in Lisbon: a preliminary study. Quim. Nova, 5, pp. 1145–1149. DOI:10.1590/S0100-40422010000500027
[13]. Faridi, S., Hassanvand, M.S., Naddafi, K., Yunesian, M., Nabizadeh, R., Sowlat, M.H., Kashani, H., Gholampour, A., Niazi, S., Zare, A., Nazmara, S. & Alimohammadi, M. (2015) Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory Environ. Sci. Pollut. Res., 22, pp. 8190–8200. DOI:10.1007/s11356-014-3944-y
[14]. Fang, Z., Yang, H., Li, C., Cheng, L., Zhao, M. & Xie, C. (2021). Prediction of PM2.5 hourly concentrations in Beijing based on machine learning algorithm and ground-based LiDAR. Arch. Environ. Prot., 47(3), pp. 98-107, DOI 10.24425/aep.2021.138468
[15]. Fsadni, P., Frank, B., Fsadni, C. & Montefort, S. (2017). The Impact of Microbiological Pollutants on School Indoor Air Quality. Journal Geoscience and Environment Protection, 5, pp. 54-65. DOI:10.4236/gep.2017.55004
[16]. Gołofit-Szymczak, M. & Górny, R.L. (2010). Bacterial and fungal aerosols in air -conditioned office buildings in Warsaw, Poland – the winter season. Int. J. Occup. Saf. Ergon., 16, pp. 465-476. DOI:10.1080/10803548.2010.11076861
[17]. Gołofit-Szymczak, M., Górny, R.L., Ławniczek-Wałczyk, A., Cyprowski, M. & Stobnicka, A. (2015) Bacteria and fungal aerosols in the work environment of cleaners. Occupational Medicine (Medycyna Pracy), 66(6), pp. 779–791. (in Polish)
[18]. Górny, R.L., Frączek, K. & Ropek, D.R. (2020). Size distribution of microbial aerosols in overground and subterranean treatment chambers at health resorts. J. Environ. Health Sci. Eng., 18(2), pp. 1437-1450. DOI:10.1007/s40201-020-00559-9.
[19]. Górny, R.L. (2019). Microbial aerosols: sources, properties, health effects, exposure assessment – A review. KONA Powder and Particle Journal, 37, pp. 64-84. DOI:10.14356/kona.2020005
[20]. Górny, R.L., Cyprowski, M., Ławniczek-Wałczyk, A., Gołofit-Szymczak, M. & Zapór, L. (2011). Biohazards in the indoor environment – a role for threshold limit values in exposure assessment, [in:] Management of indoor air quality, Dudzińska MR (Ed.). Taylor & Francis Group, London, pp. 1-20.
[21]. Grzyb, J. & Lenart-Boroń, A. (2020) Size distribution and concentration of fungal aerosol in animal premises of a zoological garden. Aerobiol., 36, pp: 233–248. DOI:10.1007/s10453-020-09625-z
[22]. Jiayu, C., Qiaoqiao, R., Feilong, C., Chen, L., Jiguo, W., Zhendong, W., Lingyun, C., Liu, R. & Guoxia, Z. (2019). Microbiology Community Structure in Bioaerosols and the Respiratory Diseases. J. Environ. Sci. Public Health, 3, pp. 347-357. DOI:10.26502/jesph.96120068 23. Jo, W.K. & Seo, Y.J. (2005). Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools, and homes. Chemosphere, 61(11), pp. 1570–1579. DOI:10.1016/j.chemosphere.2005.04.103
[24]. Jurado, S.R., Bankoff, A.D.P., Jurado, S.R., Bankoff, A.D.P. & Sanchez, A. (2014). Indoor Air Quality In Brazilian Universities. Int. J. Env. Res. Pub. Health, 1, pp. 7081-7093. DOI:10.3390/ijerph110707081
[25]. Sanchez, A. (2014). Indoor Air Quality In Brazilian Universities. Int. J. Env. Res. Pub. Health, 1, pp. 7081-7093. DOI:10.3390/ijerph110707081
[26]. Kim, K.H., Kabir, E. & Jahan, S.A. (2018). Airborne bioaerosols and their impact on human health. J. Environ. Sci. (China), 67, pp. 23-35. DOI:10.1016/j.jes.2017.08.027
[27]. Lang-Yona, N., Shuster-Meiseles, T., Mazar, Y., Yarden, O. & Rudich, Y. (2016). Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: outdoor exposure study supported by laboratory experiments. Sci. Total Environ., 541, pp. 365-371. DOI:10.1016/j.scitotenv.2015.09.058
[28]. Lee, J.H. & Jo, W.K. (2006). Characteristic of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environ. Res., 101, pp. 11-17. DOI:10.1016/j.envres.2005.08.009
[29]. Li, Y., Ge, Y., Wu, C., Guan, D., Liu, J. & Wang, F. (2020). Assessment of culturable airborne bacteria of indoor environments in classrooms, dormitories and dining hall at university: a case study in China. Aerobiol., 36, pp. 313–324. DOI:10.1007/s10453-020-09633-z
[30]. Mainka, A., Zajusz-Zubek, E., Kozielska, B. & Brągoszewska, E. (2015). Study of air pollution affecting children in a municipal kindergarten located on a road with heavy traffic. Engineering and Environmental Protection (Inżynieria i Ochrona Środowiska), 18(1), pp. 119-133. (in Polish)
[31]. Piersanti, A., D’Elia, I., Gualtieri, M., Briganti, G., Cappelletti, A., Zanini, G. & Ciancarella, L. (2021). The Italian National Air Pollution Control Programme: Air Quality, Health Impact and Cost Assessment. Atmosphere, 12(2), pp. 196. DOI:10.3390/atmos12020196
[32]. Puspita, I.D., Kamagata, Y., Tanaka, M., Asano, K. & Nakatsu, C.H. (2012). Are uncultivated bacteria really uncultivable? Microbes Environ., 27(4), pp. 356-366. DOI:10.1264/jsme2.ME12092
[33]. Sheik, G.B., Rheam, A.I., Shehri, Z.S. & Otaibi, O.B.M. (2015). Assessment of bacteria and fungi in air from College of Applied Medical Sciences (Male) at AD-Dawadmi, Saudi Arabia. Int. Res. J Biological Sci., 4(9), pp. 49-53.
[34]. Simon, X. & Duquenne, P. (2014). Assessment of workers' exposure to bioaerosols in a French cheese factory. Ann. Occup. Hyg., 58, pp. 677-692. DOI:10.1093/annhyg/meu027
[35]. Wlazło, A., Górny, R.L., Złotowska, R., Ławniczek, A., Łudzień-Izbińska, B., Harkawy A.S., Janczyk, E. (2008). Exposure of employees to selected harmful biological agents in the libraries of the Silesian Voivodship. Occupational Medicine (Medycyna Pracy), 59, pp. 159-170. (in Polish)
Go to article

Authors and Affiliations

Krzysztof Frączek
1
Karol Bulski
1
Maria Chmiel
1
ORCID: ORCID

  1. Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics,Hugo Kołłątaj University of Agriculture, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Beamforming training (BT) is considered as an essential process to accomplish the communications in the millimeter wave (mmWave) band, i.e., 30 ~ 300 GHz. This process aims to find out the best transmit/receive antenna beams to compensate the impairments of the mmWave channel and successfully establish the mmWave link. Typically, the mmWave BT process is highly-time consuming affecting the overall throughput and energy consumption of the mmWave link establishment. In this paper, a machine learning (ML) approach, specifically reinforcement learning (RL), is utilized for enabling the mmWave BT process by modeling it as a multi-armed bandit (MAB) problem with the aim of maximizing the long-term throughput of the constructed mmWave link. Based on this formulation, MAB algorithms such as upper confidence bound (UCB), Thompson sampling (TS), epsilon-greedy (e-greedy), are utilized to address the problem and accomplish the mmWave BT process. Numerical simulations confirm the superior performance of the proposed MAB approach over the existing mmWave BT techniques.
Go to article

Authors and Affiliations

Ehab Mahmoud Mohamed
1 2

  1. Electrical Engineering Dept., College of Engineering, Prince Sattam Bin Abdulaziz University, Wadi Aldwaser 11991, Saudi Arabia
  2. Electrical Engineering Dept., Faculty of Engineering Aswan University, Aswan 81542, Egypt
Download PDF Download RIS Download Bibtex

Abstract

In the vast archives and libraries of the world, countless historical documents are tucked away, often difficult to access. Thankfully, the digitization process has made it easier to view these invaluable records. However, simply digitizing them is not enough – the real challenge lies in making them searchable and computer-readable. Many of these documents were handwritten, which means they need to undergo handwriting recognition. The first step in this process is to divide the document into lines. This article introduces a solution to this problem using tensor voting. The algorithm starts by conducting voting on the binary image itself. Then, using the local maxima found in the resulting tensor field, the lines of text are precisely tracked and labeled. To ensure its effectiveness, the algorithm’s performance was tested on the data-set delivered by the organizers of the ICDAR 2009 competition and evaluated using the criteria from this contest.
Go to article

Authors and Affiliations

Tomasz Babczyński
1
Roman Ptak
1

  1. Department of Computer Engineering, Wrocław University of Science and Technology, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The work presents doping characteristics and properties of high Si−doped InGaAs epilayers lattice−matched to InP grown by low pressure metal−organic vapour phase epitaxy. Silane and disilane were used as dopant sources. The main task of investigations was to obtain heavily doped InGaAs epilayers suitable for usage as plasmon−confinement layers in the construction of mid−infrared InAlAs/InGaAs/InP quantum−cascade lasers (QCLs). It requires the doping concentration of 1×1019 cm–3 and 1×1020 cm–3 for lasers working at 9 μm and 5 μm, respectively. The electron concentration increases linearly with the ratio of gas−phase molar fraction of the dopant to III group sources (IV/III). The highest electron concentrations suitable for InGaAs plasmon−contact layers of QCL was achieved only for disilane. We also observed a slight influence of the ratio of gas−phase molar fraction of V to III group sources (V/III) on the doping efficiency. Structural measurements using high−resolution X−ray diffraction revealed a distinct influence of the doping concentration on InGaAs composition what caused a lattice mismatch in the range of –240 ÷ –780 ppm for the samples doped by silane and disilane. It has to be taken into account during the growth of InGaAs contact layers to avoid internal stresses in QCL epitaxial structures.

Go to article

Authors and Affiliations

B. Ściana
M. Badura
W. Dawidowski
K. Bielak
D. Radziewicz
D. Pucicki
A. Szyszka
K. Żelazna
M. Tłaczała
Download PDF Download RIS Download Bibtex

Abstract

Total toxicity of two types of mineral oil (from Zakum and Kuwait) was determined with respect to hydrobionts of the Antarctic ecosystem. Crustacean — Euphausia superba proved to be sensitive to hydrocarbon pollution of the sea environment (LC50 x 48 h-1 = 7.62 ppm). Fish — Notothenia rossi marmorata showed much lower sensitivity.

Go to article

Authors and Affiliations

Włodzimierz Ogrodowczyk

This page uses 'cookies'. Learn more