Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The presented article describes the method for determining one of the trace elements occurring in coalbismuth. The subjects of the analysis were coal type 34, 35 and their fly ashes derived from Jastrzębska Spółka Węglowa. The main reason for the research was the extensive use of bismuth in many industry sectors. Additionally, bismuth is on the list of deficit elements, therefore the possibility of obtaining an alternative for its recycling source of it is needed, is required. The research was carried out using atomic absorption spectrometry with electrothermal atomization in a graphite cuvette. The samples were incinerated at 800°C and microwave mineralization in a high-pressure closed system was performed until the spectrometric analysis was achieved. In order to achieve mineralization, a mixture of HF and HNO3 acids was used to turn the samples into acidic solutions. The preparation of the samples was based on available literature data and own observations. In the experiment, the effects of the additive modifier was modified by changing the temperature in further steps: drying, incineration, cooling, atomization and burning were described. In addition, the palladium modifier was used in order to limit secondary reactions and enable the evaporation of matrix components. The measurement conditions which are presented in this article allow for a linear calibration curve to be established. However, this is not clear and the definitive method for determining the bismuth in coal is carried out through the use of ET-AAS.

Go to article

Authors and Affiliations

Dorota Czarna
Download PDF Download RIS Download Bibtex

Abstract

The article will consider the possibility of using sources in modernising the biological study of existence in history on the basis of selected trends of “modern historiography”. The problem of sources is considered in the context of the use of anthropology of knowledge, historical anthropology, microhistory, and chaos theory in historical-medical research. In this process, I see an opportunity to look for new research spaces and, therefore, ask new questions to source messages or to search for new ones. Therefore, it is important not to forget about the need to base the narrative on the source while introducing methodological innovations.

Go to article

Authors and Affiliations

Tadeusz Srogosz
Download PDF Download RIS Download Bibtex

Abstract

Methods of reliability engineering allow to anticipate an efficiency both geodetic network and single control points throughout the period of its operating. A reliability assessment of a predicted survey object behaviour produces data useful in optimisation of survey scope. timetable and accuracy. The essentials of reliability approach and procedures of finding of operational reliability characteristics have been presented in the paper. The presented characteristics include: the failure rate function ,i(/), the reliability function R(I) and the random object life F(1). Methods applied in reliability engineering viz. method of complete probability and method of evaluation of raw and parallel reliable structures have been adopted for survey purposes. Besides the standard ones original methods are also presented in the paper. Their concept lies on finding of stability functions and reliability characteristics indicated by means of statistical tests referring to density probability of predicted displacements. Although the presented theory is of general character the main application is focused on levelling networks.
Go to article

Authors and Affiliations

Bogdan Wolski
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate the antioxidant effect of selenium in Pisum sativum L. plants pre-treated with sodium selenite or sodium selenate at a concentration of 10 and 20 μM, and then colonized by pea aphid Acyrthosiphon pisum (Harris). It has been hypothesized that selenium at low concentrations alleviates oxidative stress caused by aphid feeding on pea leaves. The study focused on the generation of reactive oxygen species (superoxide anion, hydrogen peroxide and hydroxyl radical), the activities of the antioxidant enzymes (superoxide dismutase and ascorbate peroxidase) scavenging the reactive oxygen species levels, as well as on total antioxidant activity in pea leaves. Selenium in pea leaves exposed to aphid feeding affected changes in the levels of reactive oxygen species, the activity of studied antioxidant enzymes, and the total antioxidant capacity. Effects depended on the form and concentration of selenium, as well as on the time after the colonization of pea plants by aphids. Obtained results showed beneficial effects of selenium in alleviating oxidative stress in pea leaves caused by aphid feeding.
Go to article

Bibliography

1. Andrade F.R., da Silva G.N., Guimarães K.C., Barreto H.B.F., de Souza K.R.D., Guilherme L.R.G., Faquin V. Reis A.R. 2018. Selenium protects rice plants from water deficit stress. Ecotoxicology and Environmental Safety 164: 562–570. DOI: https://doi.org/10.1016/j.ecoenv.2018.08.022
2. Apel K., Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373–399. DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141701
3. Bartosz G. 2013. Druga twarz tlenu. Wolne rodniki w przyrodzie. [Second Face of Oxygen. Free Radicals in Nature]. Wydawnictwo Naukowe PWN, Warszawa, Poland, 447 pp. (in Polish)
4. Beauchamp C., Fridovich I. 1971. Superoxide dismutase, improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44 (1): 276–287. DOI: https://doi.org/10.1016/0003-2697(71)90370-8
5. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1–2): 248–254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
6. Cartes P., Jara A., Pinilla L., Rosas A., Mora M. 2010. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Annales of Applied Biology 156: 297–307. DOI: https://doi.org/10.1111/j.1744-7348.2010.00387.x
7. Coppola V., Coppola M., Rocco M., Digilio M.C., D’Ambrosio C., Renzone G., Renzone G., Martinelli R., Scaloni A., Pennacchio F., Rao R., Corrado G. 2013. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genomocs 14: 515–532. DOI: https://doi.org/10.1186/1471-2164-14-515
8. Czerniewicz P., Sytykiewicz H., Durak R., Borowiak-Sobkowiak B., Chrzanowski G. 2017. Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiology and Biochemistry 118: 529–540. DOI: https://doi.org/10.1016/j.plaphy.2017.07.024
9. Dampc J., Kula-Maximenko M., Molon M., Durak R. 2020. Enzymatic defense response of apple aphid Aphis pomi to increased temperature. Insects 11 (7): 436. DOI: https://doi.org/10.3390/insects11070436
10. Das K., Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2: 53. DOI: https://doi.org/10.3389/ fenvs.2014.00053
11. Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57: 779–795. DOI: https://doi: 10.1007/s000180050041
12. del Pino A.M., Guiducci M., D’Amato R., Di Michele A., Tosti G., Datti A., Palmerini C.A. 2019. Selenium maintains cytosolic Ca2+ homeostasis and preserves germination rates of maize pollen under H2O2-induced oxidative stress. Scientific Reports 9 (1): 1–9. DOI: https://doi.org/1038/s41598-019-49760-3
13. del Río L.A., Corpas F.J., Sandalio L.M., Palma J.M., Gómez M., Barroso J.B. 2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany 53: 1255–1272. DOI: https://doi.org/10.1093/jexbot/53.372.1255
14. Doke N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiological Plant Pathology 23 (3): 345–357. DOI: https://doi.org/10.1016/0048-4059(83)90019-X
15. Feng R., Wei C., Tu S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany 87: 58–68. DOI: https://doi.org/10.1016/j.envexpbot.2012.09.002
16. Foyer C.H., Rasool B., Davey J.W., Hancock R.D. 2016. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. Journal of Experimental Botany 67 (7): 2025–2037. DOI: https://doi.org/10.1093/jxb/erw079.
17. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48 (12): 909–930. DOI: https://doi.org/10.1016/j.plaphy.2010.08.016
18. Gouveia G.C.C., Galindo F.S., Lanza M.G.D.B., Silva A.C.R., Mateus M.P.B, Silva M.S., Tavanti R.F.R., Tavanti T.R., Lavres J., Reis A.R. 2020. Selenium toxicity stress-induced phenotypical, biochemical and physiological responses in rice plants: Characterization of symptoms and plant metabolic adjustment. Ecotoxicology and Environmental Safety 202: e110916. DOI: https://doi.org/10.1016/j.ecoenv.2020.110916
19. Guardado-Félixa D., Serna-Saldivarb S.O., Cuevas-Rodrígueza E.O., Jacobo-Velázquezb D.A., Gutiérrez-Uribeb J.A. 2017. Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea ( Cicer arietinum L.) sprouts. Food Chemistry 226: 69–74. DOI: https://doi.org/10.1016/j.foodchem.2017.01.046
20. Gupta M., Gupta S. 2017. An overview of plant selenium uptake, metabolism and toxicity in plants. Frontiers in Plant Science 7: e2074. DOI: https://doi.org/10.3389/fpls.2016.02074
21. Habibi G. 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agriculturae Slovenica 101: 31–39. DOI: https://doi.org/10.2478/acas-2013-0004
22. Hartikainen H., Xue H., Piironen V. 2000. Selenium as an antioxidant. Plant and Soil 225: 193–200. DOI: https://doi.org/10.1023/A:1026512921026
23. He J., Chen F., Chen S., Lv G., Deng Y., Fang W., Guan Z., He C. 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defence enzyme activity in response to aphid infestation. Journal of Plant Physiology 168 (7): 687–693. DOI: https://doi.org/10.1016/j.jplph.2010.10.009
24. Holman J. 2009. Host Plant Catalog for Aphids. Palearctic Region. Springer Science + Business Media B.V., Berlin/Heidelberg, Germany, 1216 pp.
25. Hossain M.A., Bhattacharjee S., Armin S.M., Qian P., Xin W., Li H.Y., Burritt D.J., Fujita M, Tran L.-S.P. 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in Plant Science 6: e420. DOI: https://doi.org/10.3389/ fpls.2015.00420
26. Kasote D.M., Katyare S.S., Hegde M.V., Bae H. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences 11 (8): 982–991. DOI: https://doi:10.7150/ijbs.12096
27. Kuśnierczyk A., Winge P., Jorstad T.S., Troczyńska J., Rossiter J.T., Bunes A.M. 2008. Towards global understanding of plant defence against aphids timing and dynamics of early Arabidopsis defence responses to cabbage aphid ( Brevicoryne brassicae) attack. Plant, Cell and Environment 31 (8): 1097–1115. DOI: https://doi.org/10.1111/j.1365-3040.2008.01823.x
28. Lehmann S., Serrano M., L’Haridon F., Tjamos S.E., Metraux J P. 2015. Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112: 54–62. DOI: https://doi.org/10.1016/j.phytochem.2014.08.027
29. Łukasik I., Goławska S., Wójcicka A. 2012. Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in triticale. Polish Journal of Environmental Studies 21 (6): 1937–1941.
30. Łukasik I., Goławska S. 2013. Effect of host plant on levels of reactive oxygen species andantioxidants in the cereal aphids Sitobion avenae and Rhopalosiphum padi. Biochemical Systematic and Ecology 51: 232–239. DOI: https://doi.org/10.1016/j.bse.2013.09.001
31. Łukaszewicz S., Politycka B., Smoleń S. 2018. Effect of selenium on the content of essential micronutrients and their translocation in garden pea. Journal of Elementology 23 (4): 1307–1317. DOI: https://doi.org/10.5601/jelem.2017.22.4.1577.
32. Maffei M.E., Mithöfer A., Boland W. 2007. Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68 (22–24): 2946–2959. DOI: https://doi.org/10.1016/j.phytochem.2007.07.016
33. Mai V.C., Bednarski W., Borowiak-Sobkowiak B., Wilkaniec B., Samardakiewicz S., Morkunas I. 2013. Oxidative stress in pea seedling leaves in response to Acirthosiphon pisum infestation. Phytochemistry 93: 49–62. DOI: https://doi.org/10.1016/j.phytochem.2013.02.011
34. Mai V.C., Tran N.T., Nguyen D.S. 2016. The involvement of peroxidases in soybean seedlings’ defence against infestation of cowpea aphid. Arthropod-Plant Interactions 10: 283–292. DOI: https://doi.org/10.1007/s11829-016-9424-1
35. Marchi-Werle L., Heng-Moss T.M., Hunt T.E., Baldin E.L.L., Baird L.M. 2014. Characterization of peroxidase changes in tolerant and susceptible soybeans challenged by soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology 107 (5): 1985–1991. DOI: https://doi.org/10.1603/EC14220
36. Mechora Š., Ugrinović K. 2015. Can plant-herbivore interaction be affected by selenium? Austin Journal of Environmental Toxicology 1(1): e5.
37. Messner B., Boll M. 1994. Cell suspension of spruce ( Picea abies): inactivation of extracellular enzymes by fungal elicitor-induced transient release of hydrogen peroxide. Plant Cell Tissue Organ and Culture 39: 69–78. DOI: https://doi.org/10.1007/BF00037594
38. Moloi M.J., van der Westhuizen A.J. 2008. Antioxidative enzymes and the Russian wheat aphid ( Diuraphis noxia) resistance response in wheat ( Triticum aestivum). Plant Biology 10 (3): 403–407. DOI: https://doi.org/10.1111/j.1438-8677.2008.00042.x
39. Nakano Y., Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22 (5): 867–880. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232
40. Ni X., Quinsberry S.S. 2003. Possible roles of esterase, glutathione S-transferase, and superoxide dismutase activities in understanding aphid–cereal interactions. Entomologia Experimentalis et Applicata 108: 187–195. DOI: https://doi.org/10.1046/j.1570-7458.2003.00082.x
41. Ni X., Quisenberry S.S., Heng-Moss T.M., Markwell J., Sarath G., Klucas R., Baxendale F. 2001. Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. Journal of Economic Entomology 94: 743–751. DOI: https://doi.org/10.1603/0022-0493-94.3.743
42. Pereira A.S., Dorneles A.O.S., Bernardy K., Sasso V.M., Bernardy D., Possebom G., Rossato L.V., Dressler V.L., Tabaldi L.A. 2018. Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. Environmental Science and Pollution Research 25: 18548–18558. DOI: https://doi.org/10.1007/s11356-018-2005-3
43. Pierson L.M., Heng-Moss T.M., Hunt T.E., Reese J. 2011. Physiological responses of resistant and susceptible reproductive stage soybean to soybean aphid ( Aphis glycines Matsumura) feeding. Arthropod-Plant Interactions 5: 49–58. DOI: https://doi.org/10.1007/s11829-010-9115-2
44. Prochaska T.J. 2011. Characterization of the Tolerance Response in the Soybean KS4202 to Aphis glycines Matsumura. M.Sc. Thesis, University of Nebraska, Lincoln, USA.
45. Prochaska T.J., Pierson L.M., Baldin E.L.L., Hunt T.E., Heng-Moss T.M., Reese J.C. 2013. Evaluation of late vegetative and reproductive stage soybeans for resistance to soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology 106 (2): 1036–1044. DOI: https://doi.org/10.1603/EC12320
46. Quan L.J., Zhang B., Shi W.W., Li H.Y. 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal od Integrative Plant Biology 50: 2–18. DOI: https://doi.org/10.1111/j.1744-7909.2007.00599.x
47. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. 1999. Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26: 1231–1237. DOI: https://doi.org/10.1016/s0891-5849(98)00315-3
48. Ríos J.J., Blasco B., Cervilla L.M., Rosales M.A., Sanchez-Rodriguez E., Romero L., Ruiz J.M. 2009. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Annals of Applied Biology 154: 107–116. DOI: https://doi.org/10.1111/j.1744-7348.2008.00276.x
49. Saxena I., Srikanth S., Chen Z. 2016. Cross talk between H2O2 and interacting signal molecules under plant stress response. Frontiers in Plant Science 7: e570. DOI: https://doi.org/10.3389/fpls.2016.00570
50. Shalaby T., Bayoumi Y., Alshaal T., Elhawat N., Sztrik A., El-Ramady H. 2017. Selenium fortification induces growth, antioxidant activity, yield and nutritional quality of lettuce in salt-affected soil using foliar and soil applications. Plant Soil 421: 245–258. DOI: https://doi.org/10.1007/s11104-017-3458-8
51. Shao Y., Guo M., He X., Fan Q., Wang Z., Jia J., Guo J. 2019. Constitutive H2O2 is involved in sorghum defense against aphids. Brazilian Journal of Botany 42 (2): 271–281. DOI: https://doi.org/10.1007/s40415-019-00525-2
52. Sieprawska A., Kornaś A., Filek M. 2015. Involvement of selenium in protective mechanisms of plants under environmental stress conditions – review. Acta Biologica Cracoviensia. Series Botanica 57 (1): 9–20. DOI: http://dx.doi.org/10.1515/abcsb-2015-0014
53. van Breusegem F., Vranová E., Dat J.F., Inzé D. 2001. The role of active oxygen species in plant signal transduction. Plant Science 161 (3): 405–416. DOI: https://doi.org/10.1016/S0168-9452(01)00452-6
54. von Tiedemann A.V. 1997. Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiological and Molecular Plant Pathology 50 (3): 151–166. DOI: https://doi.org/10.1006/pmpp.1996.0076
55. Walz C., Juenger M., Schad M., Kehr J. 2002. Evidence for the presence and activity of a complete defence system in mature sieve tubes. The Plant Journal 31 (2): 189–197. DOI: https://doi.org/10.1046/j.1365-313X.2002.01348.x
56. Wu J., Baldwin I.T. 2010. New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics 44: 1–24. DOI: https://doi.org/10.1146/annurev-genet-102209-163500
57. Yang T., Poovaiah B. W. 2002. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences of the United States of America 99 (6): 4097–4102. DOI: https://doi.org/10.1073/pnas.052564899
Go to article

Authors and Affiliations

Sabina Łukaszewicz
1
Barbara Politycka
1
Beata Borowiak-Sobkowiak
2

  1. Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
  2. Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

In order to select the most optimum parameters for running heat recuperation process from aerobic composting process, three testing stages were run involving the registration of the value of recuperated heat volume and the observation of cooling impact on composting process parameters. The values of thermal conductivity coefficient were measured as a function of compost temperature, density and age. The values ranged from 0.171 to 0.300 W/mK. The optimum parameters for process running were selected. Basing on them it was estimated how much heat will be possible to recuperate during the composting process on industrial scale using a battery of heat exchangers. For artificially aerated pile with the following dimensions: lower base 8 m, upper base 5 m, height 3.5 m, length 3 m; it will be possible to recuperate approximately 7.4 kW (from 1 m2 of heat exchanger surface - 774 W).
Go to article

Authors and Affiliations

Ewa Klejment
Marian Rosiński
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a comparative analysis of feed phosphates production processes using the Life Cycle Assessment (LCA) methodology and process analysis in the quantification of cumulated calculation. Three feed phosphates production processes were compared: a modified thermal process and two different low temperature endothermic units (one working in the "Bonarka" Inorganic Works (BIW) in Cracow and the other in the Phosphoric Fertilizers Works (PFW) "Fosfory" in Gdańsk). The LCA results indicated that the most advantageous technology is the feed phosphates production unit in "Fosfory". It was shown that LCA can be an efficient instrument for evaluating environmental impact, though it should be compared with other estimation methods.
Go to article

Authors and Affiliations

Zygmunt Kowalski
Joanna Kulczycka
ORCID: ORCID
Grzegorz Skowron
Agnieszka Sobczak
Download PDF Download RIS Download Bibtex

Abstract

The adsorption of cadmium(ll) ions by low moor Alder Peat occurring in the overburden of brown coal deposits in Bełchatów Brown Coal Mine was investigated under dynamic conditions. Cadmium(ll) ions were applied to the column in aqueous solutions containing either cadmium sulfate or cadmium chloride. Solutions were also prepared containing cadmium ions alone or in combination with zinc(ll) and copper(ll) ions. The peat used as the adsorbent in this study had a high capacity for adsorbing the ions tested. The cadmium adsorbing capacity of the peat was significantly affected by pH, the anions present in the solution, and other cations present in the solution. The cadmium adsorbing capacity of the peat was significantly lower in the presence of other metal cations such as zinc(l l) and copper(l l), because these cations effectively compete with cadmium ions for binding sites on the peat. Peat can be recommended for purification processes designed to remove cadmium ions. Because cadmium ions arc predominantly loosely bound to the peat, they are easily extracted. This means that the cadmium adsorbing capacity of the peat is regenerated so that it can be used in further purification cycles.
Go to article

Authors and Affiliations

Joanna Kyzioł-Komosińska
Irena Twardowska
Aneta Kocela

This page uses 'cookies'. Learn more