Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

According to the Nitrate Directive it is necessary to established a protective belt (ecotones) around lakes. Inside these belts, it is forbidden to use fertilize for agricultural purposes. It is believed that it is the most imported measure to protect water quality in the lake. The analysis were conducted to estimate the sources of nitrogen entering the waters of the lake. Some analysis were conducted to estimate the sources of nitrogen entering waters of the lake. It was proved that the biggest load (more than 80%) of contamination is entering the lake with water flowing in streams and ditches. Only 10% of the chemicals are entering the lake with the groundwater filtrating to the lake. It is very important to use a proper methods of agriculture with proper methods of fertilization in the whole area of river basin flowing to the lakes.

Go to article

Authors and Affiliations

Waldemar Mioduszewski
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses the microsegregation of Mn, Mo, Cr, W, V, Si, Al, Cu and P in the white cast iron. Eutectic alloy with the content of 4.25% C was studied. The white cast iron was directionally solidified in the vacuum Bridgman-type furnace at a constant pulling rate v = 83 μm/s and v = 167 μm/s and at a constant temperature gradient G = 33.5 K/mm. The microstructural research was conducted using light and scanning electron microscopy. The microsegregation of elements in ledeburite was evaluated by EDS measurements. Content of elements in ledeburitic cementite and ledeburitic pearlite was determined. The tendency of elements to microsegregation was found dependent on the solidification rate. Microsegregation of elements between pearlite and cementite structural constituents has been specified. The effect of solidification rate on the type and intensity of microsegregation in directionally solidified eutectic white cast iron was observed. A different type of microsegregation was observed in the components of ledeburite in cementite and pearlite.
Go to article

Bibliography

[1] Podrzucki, Cz. (1991). Cast iron. Structure. Properties. Application T.1 and T.2, First Edition, Publishing house ZG STOP. (in Polish)
[2] Sękowski, K. (1973). Heterogeneity of the chemical composition of the metal matrix of ductile iron. Foundry Review. 8-9, 205-255413. (in Polish)
[3] Pietrowski, S. (1987). The influence of the chemical composition of nodular cast steel and cast iron and casting cooling rate on the austenite transformation to acicular structures. Scientific Books nr 94: Technical University of Łódź. (in Polish)
[4] Pietrowski, S. & Gumienny, G. (2006). Crystallization of nodular cast iron with additions of Mo, Cr, Cu and Ni. Archives of Foundry. 6(22), 406-413. (in Polish)
[5] Pietrowski, S. & Gumienny, G. (2012). Microsegregation in nodular cast iron with carbides. Archives of Foundry Engineering. 12(4), 127-134. DOI: 10.2478/v10266-012-0120-z.
[6] Sandoz, G. (1968). Recent Research in Cast Iron, H. Marchant, ed. New York: Gordon and Breach, 509.
[7] Malinochka, Ya.N., Maslenkov, S.B. & Egorshina, T.V. (1963). Investigation of microsegregation in cast iron using electron microprobe. Liteinoe Proizvodstvo, 1, 22-25. (in Russ.)
[8] Swindelsand, N. & Burke, J. (1971). Silicon microsegregation and first stag graphitization in white cast irons. Metallurgical Transactions. 2, 3257-3263. DOI: 10.1007/BF02811605
[9] Charbonnier, J. & Margerie, J.C. (1967). Nouvelle contribution al’etude generale des mikrosegregation dans les alliages Fe-C du type ”fonte”. Fonderie. 259, 333-344.
[10] Bazhenov, V.E., & Pikunov, M.V. (2018) Microsegregation of silicon in cast iron. Izvestiya. Ferrous Metallurgy. 61(3), 230-236. DOI: 10.17073/0368-0797-2018-3-230-236 (in Russ.)
[11] Park, J.Y. and other (2002). Effect of Mn negative segregation through the thickness direction on graphitization characteristics of strip-cast white cast iron. Scripta Materialia 46(3), 199-203. https://doi.org/10.1016/S1359-6462(01)01220-9
[12] Dojka, M. & Stawarz, M. (2020). Bifilm defects on Ti-inculated chromium white cast iron. Materials. 13(14), 3124. https://doi.org/10.3390/ma13143124
[13] Trepczyńska-Łent, M. (1997). Spheroidizing annealing of whitened ductile iron. 1st National Scientific Conference "Materials Science - Foundry - Quality", 129-137, Krakow. (in Polish)
[14] Trepczyńska-Łent, M. (1998). Microsegregation of silicon and manganese after spheroidizing annealing in cast iron with spherical graphite. Scientific Journals ATR 216, Mechanics. 43, 217-226. Bydgoszcz (in Polish).
[15] Chang, W.S. & Lin, C.M. (2013). Relationship between cooling rate and microsegregation in bottom-chilled directionally solidified ductile irons. Journal of Mining and Metallurgy, Section B: Metallurgy. 49(3)B, 315-322. https://doi.org/10.2298/JMMB120702034C.
[16] Trepczyńska-Łent, M. Boroński D. & Maćkowiak P. (2021). Mechanical properties and microstructure of directionally solidified Fe-4.25%C eutectic alloy. Materials Science and Engineering A, 822(3) 141644. https://doi.org/10.1016/j.msea.2021.141644.
[17] Trepczyńska-Łent, M. (2017). Interphase spacing in directional solidification of white carbide eutectic, METAL 2017 - 26th International Conference on Metallurgy and Materials, Conference Paper, Conference Proceedings Volume 2017-January 254-260. ISBN: 978-808729479-6.
[18] Trepczyńska-Łent, M. (2017). Directional solidification of Fe-Fe3C white eutectic alloy. Crystal Research and Technology 52(7) July 2017, 1600359, version of record online: 26 JUN 2017. DOI: 10.1002/crat.201600359.
Go to article

Authors and Affiliations

M. Trepczyńska-Łent
1
ORCID: ORCID
J. Seyda
1
ORCID: ORCID

  1. Bydgoszcz University of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study aimed touse3D computed tomography (CT) to analyse a joint between two dissimilar materials produced by friction stir welding (FSW). As the materials joined, i.e., aluminum and copper, differ in properties (e.g., density and melting point), the weld is predicted to have an inhomogeneous microstructure. The investigations involved applying microfocus computed tomography (micro-CT) to visualize and analyze the volumetric structure of the joint. Volume rendering is extremely useful because, unlike computer modelling, which requires many simplifications, it helps create highly accurate representations of objects. Image segmentation into regions was performed through global gray-scale thresholding. The analysis also included elemental mapping of the weld cross-sections using scanning electron microscopy (SEM) and examination of its surface morphology by means of optical microscopy (OP). The joint finds its use in developing elements used in the chemical, energetics and aerospace industries, due to the excellent possibilities of combining many different properties, and above all, reducing the weight of the structure.
Go to article

Bibliography

[1] Zhao, Y., You, J., Qin, J., Dong, C., Liu, L., Liu, Z. & Miao, S. (2022). Stationary shoulder friction stir welding of Al–Cu dissimilar materials and its mechanism for improving the microstructures and mechanical properties of joint. Materials Science & Engineering A 837, 142754. https://doi.org/10.1016/j.msea.2022.142754.
[2] Zhou, L., Li, G.H., Zhang, R.X., Zhou, W.L., He, W.X., Huang, Y.X. & Song, X.G. (2019). Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint. Journal of Alloys and Compounds. 775(15), 372-382. https://doi.org/10.1016/ j.jallcom.2018.10.045.
[3] Tong, L., Xie, J.N., Liu, L., Chang, G. & Ojo, O.O. (2020). Microscopic appraisal and mechanical behavior of hybrid Cu/Al joints fabricated via friction stir spot welding-brazing and modified friction stir clinching-brazing. Journal of Materials Research and Technology. 9(6),13239-13249. https://doi.org/10.1016/j.jmrt.2020.09.042.
[4] Tian, W.H., Su, H. & Wu, C.S. (2020). Effect of ultrasonic vibration on thermal and material flow behavior, microstructure and mechanical properties of friction stir welded al/cu joints. International Journal of Advanced Manufacturing Technology. 107(1), 59-71. https://doi.org/10.1007/s00170-020-05019-0.
[5] Pilarczyk, J. (2005). Engineer's Handbook 2, Welding. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[6] Rajak, D.K., Pagar, D.D., Menezes, P.L. & Eyvazian, A. (2020). Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology. 34(24), 2613-2637. https://doi.org/10.1080/ 01694243.2020.1780716.
[7] Schneider, J., Chen, P. & Nunes, A.C. (2019). Entrapped oxide formation in the friction stir weld (FSW) process. Metallurgical and Materials Transactions A, 50, 257-270 https://doi.org/10.1007/s11661-018-4974-8.
[8] Rams, B., Pietras, A., & Mroczka K. (2014). Friction stir welding of elements made of cast aluminium alloys. Archives of Foundry Engineering. 59(1), 385-392.
[9] Martinsen, K., Hu, S.J. & Carlson, B.E. (2015). Joining of dissimilar materials. CIRP Annals. 64(2), 679-699. https://doi.org/10.1016/j.cirp.2015.05.006.
[10] Weman, K. (2011). Welding processes handbook. New York: Elsevier.
[11] Singh, R., Kumar, R., Feo, L., et al. (2016). Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Composites Part B: Engineering. 101, 77-86. https://doi.org/10.1016/ j.compositesb.2016.06.082.
[12] Rajak, D.K., Pagar, D.D., Menezes, P.L., et al. (2019). Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers. 11(10), 1667. https://doi.org/10.3390/polym11101667.
[13] Lee, H.S., Lee, Y.R., Min, K.J. (2016). Effects of friction stir welding speed on AA2195 alloy. In: MATEC Web of Conferences. Vol. 45, France: EDP Sciences.
[14] Ramnath, B.V., Subramanian, S.A., Rakesh, R. et al. (2018). A review on friction stir welding of aluminium metal matrix composites. In IOP Conference Series: Materials Science and Engineering. 8-9 March 2018. IOP Publishing; 012103.
[15] Bankowski, D., Spadlo, S. (2017). Vibratory tumbling of elements made of Hardox400 steel. In 26th International Conference on Metallurgy and Materials (pp. 725-730).
[16] Karrar, G., Galloway, A., Toumpis, A., Li, H.J. & Al-Badouc, F. (2020). Microstructural characterisation and mechanical properties of dissimilar aa5083-copper joints produced by friction stir welding. Journal of Materials Research and Technology. 9(5), 11968-11979. https://doi.org/10.1016/j.jmrt.2020.08.073.
[17] Galvao, I., Loureiro, A. & Rodrigues, D.M. (2016). Critical review on friction stir welding of aluminium to copper. Science and Technology of Welding and Joining. 21(7), 523-546. https://doi.org/10.1080/13621718.2015.1118813.
[18] Ouyang, J., Yarrapareddy, E. & Kovacevic, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology. 172(1), 110-122. https://doi.org/10.1016/j.jmatprotec.2005.09.013.
[19] Mehta, K.P. & Badheka, V.J. (2016). A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Materials and Manufacturing Processes. 31(3), 233-254. https://doi.org/10.1080/10426914.2015.1025971.
[20] Cao, F.J., Li, J.P., Hou, W.T., Shen, Y.F., Ni, R. (2021). Microstructural evolution and mechanical properties of the friction stir welded Al Cu dissimilar joint enhanced by post-weld heat treatment. Materials Characterization. 174, 110998. https://doi.org/10.1016/j.matchar.2021.110998.
[21] Hou, W.T., Shen, Z.K., Huda, N., Oheil, M., Shen, Y.F., Jahed, H. & Gerlich, A.P. (2021). Enhancing metallurgical and mechanical properties of friction stir butt welded joints of Al–Cu via cold sprayed Ni interlayer. Materials Science and Engineering: A. 809, 140992. https://doi.org/10.1016/j.msea.2021.140992.
[22] Mao, Y., Ni, Y., Qin, X.D.P. & Li, F. (2020). Microstructural characterization and mechanical properties of micro friction stir welded dissimilar al/cu ultra-thin sheets. Journal of Manufacturing Processes. 60, 356-365. https://doi.org/10.1016/j.jmapro.2020.10.064.
[23] Patel, N.P., Parlikar, P., Dhari, R.S., Mehta, K. & Pandya, M. (2019). Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint. Journal of Manufacturing Processes. 47, 98-109. https://doi.org/10.1016/j.jmapro.2019.09.020.
[24] Mehta, K.P. & Badheka, V.J. (2017). Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. Journal of Materials Processing Technology. 239, 336-345. https://doi.org/10.1016/ j.jmatprotec.2016.08.037.
[25] You, J.Q., Zhao, Y.Q., Dong, C.L., Wang, C.G., Miao, S., Yi, Y.Y. & Hai, Y.H. (2020). Microstructure characteristics and mechanical properties of stationary shoulder friction stir welded 2219-t6 aluminium alloy at high rotation speeds. The International Journal of Advanced Manufacturing Technology. 108, 987-996. https://doi.org/10.1007/s00170-019-04594-1.
[26] Li, D.X., Yang, X.Q., Cui, L., He, F.Z. & Zhang, X. (2015). Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-t651. Journal of Materials Processing Technology. 222, 391-398. https://doi.org/10.1016/ j.jmatprotec.2015.03.036.
[27] Depczynski, W., Spadlo, S., Mlynarczyk, P., Ziach, E., Hepner P. (2015). The selected properties of porous layers formed by pulse microwelding technique. In METAL 2015: 24TH International Conference on Metallurgy and Materials, 3 - 5 June 2015 (pp.1087-1092). Brno, Czech Republic.
[28] Bańkowski D. & Młynarczyk P. (2020). Visual testing of castings defects after vibratory machining. Archives of Foundry Engineering. 20(4), 72-76. DOI: 10.24425/afe.2020.133350.
[29] Mlynarczyk, P., Spadlo, S. (2016). The analysis of the effects formation iron - tungsten carbide layer on aluminum alloy by electrical discharge alloying process. In METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials, 25 – 27 May 2016 (pp.1109-1114). Brno, Czech Republic.
[30] Depczynski, W. Jasionowski, R., Mlynarczyk, P. (2018). The impact of process variables on the connection parameters during pulse micro-welding of the H800 superalloy. In METAL 2018: 27TH International Conference on Metallurgy and Materials, 23 – 25 May 2018 (pp. 1506-1512). Brno, Czech Republic.
[31] Bankowski, D. & Spadlo, S. (2019). The use of abrasive waterjet cutting to remove flash from castings. Archives of Foundry Engineering. 19(3), 94-98. DOI: 10.24425/afe.2019.129617.
[32] Spadlo, S., Depczynski, W. & Mlynarczyk, P. (2017). Selected properties of high velocity oxy liquid fuel (HVOLF) - sprayed nanocrystalline WC-Co Infralloy(TM) S7412 coatings modified by high energy electric pulse. Metalurgija. 56(3-4), 412-414.
[33] Bonarski, J.T., Kania, B., Bolanowski, K. & Karolczuk, A. (2015). Utility of stress-texture characteristics of structural materials by X-ray. Archives of Metallurgy and Materials. 60(3), 2247-2252. DOI: 10.1515/amm-2015-0370.
[34] Jezierski, G. (1993). Industrial radiography. Warszawa: Wydawnictwa Naukowo-Techniczne. (in Polish).
[35] Cierniak, R. (2005). Computed tomography. Construction of CT devices. Reconstruction algorithms. Warszawa: Akademicka Oficyna Wydawnicza EXIT. (in Polish).
[36] Kielczyk, J. (2006). Industrial radiography. Wydawnictwo Gamma. (in Polish).
[37] Ratajczak, E. (2012). X-ray computed tomography (CT) for industrial tasks. Pomiary Automatyka Robotyka. 5, 104-113. (in Polish).
[38] Cullity, B.D. (1959). Elements of X-Ray diffraction. London: Addison-Wesley Publising Company. Inc.
[39] Axon, H.J., Hume-Rothery, W. (1948). Proc. R. Soc. (London), Ser. A 193, 1.
[40] Pearson, W.B. (1958).: ÑA Handbook of Lattice Spacings and Structures of Metals and Alloysì. Oxford: Pergamon Press.  
Go to article

Authors and Affiliations

Wojciech P. Depczyński
1
ORCID: ORCID
Damian Bańkowski
1
ORCID: ORCID
Piotr S. Młynarczyk
1
ORCID: ORCID

  1. Radiography and Computed Tomography Laboratory, Department of Metal Science and Manufacturing Processes, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

Exposure of green algae Chlorella vulgaris to short-term UV-B radiation (280 nm – 315 nm) induced several changes in the function of photosystem II (PS II) studied by means of chlorophyll fluorescence (FL) and oxygen evolving. The intensity of photosynthetic oxygen evolving intensity of algae suspension decreased in a similar way to the FL parameter values in proportion to the applied dose of UV-B radiation (0.0, 3.2, 6.4, 12.8 kJ·m-2). The correlation between photosynthetic oxygen evolving intensity and FV/FO ratio was better than that between photosynthetic oxygen evolving intensity and FV/FM. The vitality index (Rfd) in the UV-B irradiated algae strongly decreased, compared to the control, which indicates inhibition of potential CO2 fixation and cooperation between light and dark reactions of photosynthesis. It may indicate damage of Rubisco.
Go to article

Authors and Affiliations

Elżbieta Skórska
Antoni Murkowski

This page uses 'cookies'. Learn more