Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The meaning of temporal distributiveness occurs either in situations in which a habi-tual activity is correlated with the recurrent periods of time, or in situations in which the recurrent periods of time are accompanied by an activity. The proposed framework is yet another contribution to a series of papers exploring temporal constructions in Polish that express the meaning of distributiveness. It focuses on the analysis of con-structions with a noun phrase including “the instrumental case without a preposition”, such as uczyć się nocami, which are exponents of the distributive time proper.

Go to article

Authors and Affiliations

Czesław Lachur
Download PDF Download RIS Download Bibtex

Abstract

This study mainly focused on the current situation of antibiotic pollution in coastal wetlands by screening for four common antibiotics (norfloxacin - NOR, ofloxacin - OFL, azithromycin - AZM, and roxithromycin - RXM) and two coastal wetland plants (Suaeda and Nelumbo nucifera), to determine the removal of antibiotic pollution by phytoremediation technology and its mechanism. We aimed to provide ideas for the remediation of antibiotics in coastal wetlands and their mechanisms of action in the context of intensive farming. The results showed that both plants had remediation effects on all four antibiotics, the phytoremediation of NOR and OFL was particularly significant, and the remediation effect of N. nucifera was better than that of Suaeda . The removal rates of the four antibiotics by Suaeda and N. nucifera at low antibiotic concentrations (10–25 μg/L) reached 48.9%–100% and 77.3%–100%, respectively. The removal rates of the four antibiotics at high antibiotic concentrations (50–200 μg/L) reached 7.5%–73.2% and 22%–84.6%, respectively. Moreover, AZM was only detected in trace amounts in the roots of N. nucifera, and RXM was not detected in either plant body.
Go to article

Bibliography

  1. Blasco, D. (1994). The Ramsar Convention manual: a guide to the Convention on Wetlands of International Importance especially as Waterfowl Habitat. Water 1994.
  2. Burken, J.G. & Schnoor, J.L. (1998). Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ. Sci. Technol. 32 (21), 3379-3385. DOI:10.1021/es9706817.
  3. Calheiros, C., Rangel, A.& Castro, P. (2007). Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res. 41(8), pp. 1790-1798. DOI:10.1016/j.watres.2007.01.012.
  4. Chen, X.J., Li, F.Y. & He, Y.B. (2012). Remediation effect of two kinds of aquatic plants on water contaminated by antibiotics. Subtrop. Plant Sci. 41 (4), 1-7. (in Chinese).
  5. Chiou, C.T., Sheng, G. & Manes, M. (2001). A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ. Sci. Technol. 35 (7), pp. 1437-1444. DOI:10.1021/es0017561.
  6. Dettenmaier, E.M., Doucette, W.J. & Bugbee, W.J. (2009). Chemical hydrophobicity and uptake by plant roots. Environ. Sci. Technol. 43 (2), pp. 324-329. DOI:https://doi.org/10.1021/es801751x.
  7. Ellis, J.B. (2006). Pharmaceutical and personal care products in urban receiving waters. Environ. Pollut. 144, pp. 184-189. DOI:10.1016/j.envpol.2005.12.018.
  8. Geng, J., Liu, X., Wang, J. & Li, S. (2022). Accumulation and risk assessment of antibiotics in edible plants grown in contaminated farmlands: A review. Sci. Total Environ. 853, 158616. DOI:10.1016/J.SCITOTENV.2022.158616.
  9. Grote, M., Schwake, A.C., Michel, R., Stevens, H., Heyser, W., Langenkamper, G., Betsche, T. & Freitag, M. (2007). Incorporation of veterinary antibiotics into crop-s from manured soil. Federal Res. Centre Agric. 1 (1), pp. 25-32.
  10. Hoang, T.T.T., Tu, L.T.C., Le, N.P. & Dao, Q.P. (2013). A preliminary study on the phytoremediation o-f antibiotic contaminated sediment. Int. J. Phytoremediat. 15 (1), 65-76. DOI:10.1080/15226514.2012.670316.
  11. Hu, D.F. & Coats, J.R. (2007). Aerobic degradation and photolysis of tylosin in water and soil. Environ. Tech. Chem. 26, pp. 884-889. DOI:10.1897/06-197R.1.
  12. Jiang, L., Hu, X., Yin, D., Zhang, H. & Yu, Z. (2011). Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere 82 (6), pp. 822-828. DOI:10.1016/j.chemosphere.2010.11.028.
  13. KasprZyk-Hordern, B. & Dinsdsle, R. (2008). The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res. 42 (13), pp. 3498-3518. DOI:10.1016/j.watres.2008.04.026.
  14. Kay, P., Blackwell, P.A. & Boxall, A.B.A. (2005). A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data. Environ. Pollut. 134 (2), pp. 333-341. DOI:10.1016/j.envpol.2004.07.021.
  15. Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B. & Buxton, H.T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. stream, 1999-2000. A national reconnaissance. Environ. Sci. Technol. 36 (6), pp. 1202-1211. DOI:10.1021/ES011055J.
  16. Kumar, K., Gupta, S.C., Baidoo, S., Chander, Y. & Rosen, C.J. (2005). Antibiotic uptake by plants from soil fertilized with animal manure. J. Environ. Qual. 34 (6), pp. 2082-2085. DOI:10.2134/jeq2005.0026.
  17. Maier, M.L.V. & Tjeerdema, R.S. (2018). Azithromycin sorption and biodegradation in a simulated California river system. Chemosphere, 190, pp. 471-480. DOI:10.1016/j.chemosphere.2017.10.008.
  18. Managaki, S., Murata, A., Takada, H., Tuyen, B.C. & Chiem, N.H. (2007). Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environ. Sci. Technol. 41 (23), pp. 8004-8010. DOI:10.1021/es0709021.
  19. Mauricio, C.H. & Francis, J. (2017). Mangroves enhance local fisheries catches: a global meta-analysis. Fish. 18 (1), pp. 79-93. DOI:10.1111/faf.12168.
  20. Ostrowski, A., Connolly, R.M. & Sievers, M. (2021). Evaluating multiple stressor research in coastal wetlands: a systematic review. Mar. Environ. Res. 164, 105239. DOI:10.1016/j.marenvres.2020.105239.
  21. Peng, X.Z., Yu, Y.J., Tang, C.M., Tan, J.H., Huang, Q.X., Wang, Z.D. (2008). Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci. Total Environ. 397 (1-3), pp/ 158-166. DOI:10.1016/j.scitotenv.2008.02.059.
  22. Sun, Q.Y., Peng, Y.S., Liu, Y., Xu, J.R., Ren, K.J. & Fang, X.T. (2017). Residues and migration characteristics of antibiotics ciprofloxacin(CIP) in two mangrove wetlands. J. Environm. Sci. (China) 37 (03), pp. 1057-1064. DOI:10.13671/j.hjkxxb.2016.0327.
  23. Thuy, H.T.T. & Tu, T.C.L. (2014). Degradation of Selected Pharmaceuticals in Coastal Wetland Water and Sediments. Water Air Soil Poll. 225 (5), pp. 1-9. DOI: 10.1007/s11270-014-1940-y.
  24. Yan, C.X., Yang, Y., Zhou, J. L., Liu, M., Nie, M.H., Shi, H. & Gu, L.J. (2013). Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environ. Pollut. 175, pp. 22-29. DOI:10.1016/j.envpol.2012.12.008.
  25. Yao, L.I., Zhang, J.R., Yu-Huang, W.U., Cai, J. & Cui, Y.B. (2017). Review on Antibiotic Pollution and Phytoremediation in Coastal Wetland. DEStech Transac. Environ. Ener. Ear. Sci.(ese). DOI:10.12783/dteees/ese2017/14358.
Go to article

Authors and Affiliations

Junwen Ma
1 4
Yubo Cui
1
Peijing Kuang
1
Chengdong Ma
2
Mingyue Zhang
1
Zhaobo Chen
1
Ke Zhao
3

  1. College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
  2. Department of Marine Ecological Environment Information,National Marine Environmental Monitoring Center, Dalian, 116023, China
  3. Key Laboratory of Songliao Aquatic Environment, Ministry of Education,Jilin Jianzhu University, Changchun, 130118, China
  4. Product and Technology Development Center,Beijing Enterprises Water Group Limited, Beijing, 100102, China

This page uses 'cookies'. Learn more