Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

NTC thermistors are frequently used low in cost temperature sensors which provide some of the most desirable sensing features. However, due to the nonlinear static transfer function their sensitivity decreases with temperature increase, causing lower measurement accuracy in some regions of the measurement range. This paper proposes a method for NTC thermistor nonlinearity compensation using a Wheatstone bridge and a novel dual-stage single-flash piecewise-linear ADC. Both conversion stages are performed using the same flash ADC of a novel design based on a reduced number of comparators employed. In this manner, simpler design, lower production costs, higher compactness and lower power consumption of the linearizing ADC, are achieved. The proposed linearizing method is tested on the Vishay NTCLE413E2103F520L thermistor, in the range from 0°C to 100°C, and the obtained results confirmed the effectiveness of the method in measurement accuracy improvement: when the flash ADC of 10-bit resolution is employed the accuracy obtained is 7:4747 10-5°C.
Go to article

Bibliography

[1] Michalski, L., Eckersdorf, K., Kucharski, J., & McGhee, J. (2001). Temperature Measurement. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470846135
[2] Webster, J., & Eren, H. (2014). Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement. CRC Press. https://doi.org/10.1201/b15474
[3] Vishay. (2020). NTC Thermistors, Mini Epoxy PVC Twin Insulated Leads. [Datasheet NTCLE413, Document Number: 29078]. https://www.vishay.com/docs/29078/ntcle413.pdf
[4] Jeong, D. H., Kim, J. D., Song, H. J., Kim, Y. S., & Park, C. Y. (2015). Efficient calibration tool for thermistor temperature measurements. Applied Mechanics and Materials, 764–765, 1304–1308. https://doi.org/10.4028/www.scientific.net/amm.764-765.1304
[5] Webster, J. G. (1999). The Measurement, Instrumentation and Sensors Handbook. CRC Press LLC. https://doi.org/10.1201/9781003040019
[6] Stankovic, S. B., & Kyriacou, P. A. (2011). Comparison of thermistor linearization techniques for accurate temperature measurement in phase change materials. Journal of Physics: Conference Series. 307(1), 1–6. https://doi.org/10.1088/1742-6596/307/1/012009
[7] Lukic, J., & Denic, D. (2015). A novel design of an NTC thermistor linearization circuit. Metrology and Measurement Systems, 22(3), 351–362. https://doi.org/10.1515/mms-2015-0035
[8] Oladimeji, I., Sabo Miya, H., Abdulkarim, A., Mudathir, A., & Amuda, S. (2019). Design of Wheatstone bridge based thermistor signal conditioning circuit for temperature measurement. Journal of Engineering Science and Technology Review. 12(1), 12–17. https://doi.org/10.25103/jestr.121.02
[9] Nagarajan, P. R., George, B., & Kumar, V. J. (2017). A linearizing digitizer for Wheatstone bridge based signal conditioning of resistive sensors. IEEE Sensors Journal, 17(6), 1696–1705. https://doi.org/10.1109/JSEN.2017.2653227
[10] Nenova, Z., & Nenov T. (2009). Linearization circuit of the thermistor connection. IEEE Transactions on Instrumentation and Measurement, 58(2), 441–449. https://doi.org/10.1109/TIM.2008.2003320
[11] Maiti, T. (2008). A new hardware approach for the linearization of remote thermistor temperaturevoltage characteristic. International Journal of Electronics, 95(2), 169–176. https://doi.org/10.1080/00207210801915642
[12] Sarkar, A., Dey, D., & Munshi, S. (2013). Linearization of NTC thermistor characteristic using opamp based inverting amplifier. IEEE Sensors Journal, 13(12), 4621–4626. https://doi.org/10.1109/JSEN.2013.2267332
[13] Lopez-Martin, A. J., & Carlosena, A. (2013). Sensor signal linearization techniques: A comparative analysis. Proceedings of the IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Peru, 1–4. https://doi.org/10.1109/LASCAS.2013.6519013
[14] Dias Pereira, J. M., Postolache, O., & Silva Girao, P. M. B. (2007). A digitally programmable A/D converter for smart sensors applications. IEEE Transactions on Instrumentation and Measurement, 56(1), 158–163. https://doi.org/10.1109/TIM.2006.887771
[15] Santos, M., Horta, N., & Guilherme, J. (2014). A survey on nonlinear analog-to-digital converters. Integration, the VLSI Journal, 47(1), 12–22. https://doi.org/10.1016/j.vlsi.2013.06.001
[16] Mohan, N. M., Kumar, V. J., & Sankaran, P. (2011). Linearizing dual-slope digital converter suitable for a thermistor. IEEE Transactions on Instrumentation and Measurement, 60(5), 1515–1521. https://doi.org/10.1109/TIM.2010.2092875
[17] Mahaseth, D., Kumar, L., & Islam, T. (2018). An efficient signal conditioning circuit to piecewise linearizing the response characteristic of highly nonlinear sensors. Sensors and Actuators A: Physical, 280(2018), 559–572. https://doi.org/10.1016/j.sna.2018.08.001
[18] Lukic, J., Živanovic, D.,&Denic, D. (2015). A compact and cost-effective linearization circuit used for angular position sensors. Facta Universitatis Series: Automatic Control and Robotics, 14(2), 123–134.
[19] Lopez-Martin, A. J., Zuza, M., & Carlosena, A. (2003). A CMOS A/D converter with piecewise linear characteristic and its application to sensor linearization. Analog Integrated Circuits and Signal Processing, 36(1–2), 39–46. https://doi.org/10.1023/A:1024437311497
[20] Bucci, G., Faccio, M., & Landi, C. (2000). New ADC with piecewise linear characteristic: case studyimplementation of a smart humidity sensor. IEEE Transactions on Instrumentation and Measurement, 49(6), 1154–1166. https://doi.org/10.1109/19.893250
[21] Chio, U. F.,Wei, H. G., Zhu, Y., Sin, S. W., U. S. P., Martins, R. P.,&Maloberti, F. (2010). Design and experimental verification of a power effective flash-SAR subranging ADC. IEEE Transactions on Circuits and Systems – II: Express Briefs, 57(8), 607–611. https://doi.org/10.1109/TCSII.2010.2050937
[22] Jovanovic, J., & Denic, D. (2016). A cost-effective method for resolution increase of the two-stage piecewise linear ADC used for sensor linearization. Measurement Science Review, 16(1), 28–34. https://doi.org/10.1515/msr-2016-0005
[23] Lee, J. I., & Song, J. (2013). Flash ADC architecture using multiplexers to reduce a preamplifier and comparator count. Proceedings of the IEEE International Conference of IEEE Region 10 (TENCON 2013), China, 1–4. https://doi.org/10.1109/TENCON.2013.6718487
[24] Lee,W., Huang, P., Liao,Y.,&Hwang,Y. (2007).Anewlowpower flashADCusing multiple-selection method. Proceedings of the IEEE Conference on Electron Devices and Solid-State Circuits, Taiwan, 341–344. https://doi.org/10.1109/EDSSC.2007.4450132
[25] International Electrotechnical Commission. (2015). Preferred number series for resistors and capacitors (IEC 60063:2015). https://webstore.iec.ch/publication/22011
[26] Fraden, J. (2010). Handbook of Modern Sensors: Physics, Designs, and Applications. Springer Science + Business Media. https://doi.org/10.1007/978-1-4419-6466-3
[27] Regtien, P., & Dertien, E. (2018). Sensors for Mechatronics. Elsevier. https://doi.org/10.1016/ C2016-0-05059-3
Go to article

Authors and Affiliations

Jelena Jovanović
1
Dragan Denić
1

  1. University of Niš, Faculty of Electronic Engineering, Measurements Department, Aleksandra Medvedeva 14, 18000 Niš, Serbia
Download PDF Download RIS Download Bibtex

Abstract

The paper proposes a procedure for the conceptual design of reinforced concrete (RC) structures under a multiple load case (MLC), based on the truss-like topology optimization method. It is assumed that planar truss-like members are densely embedded in concrete to simulate RC structures. The densities and orientations of the reinforcing bars at nodes are regarded as optimization variables. The optimal reinforcement layout is obtained by solving the problem of minimizing the total volume of reinforcing bars with stress constraints. By solving a least squares problem, the optimized reinforcement layout under theMLCis obtained.According to the actual needs of the project, the zones to be reinforced are determined by reserving a certain percentage of elements. Lastly, a recommended reinforcement design is determined based on the densities and orientations of truss-like members. The reinforcement design tends to be more perfect by adding necessary structural reinforcements that meet specification requirements. No concrete cover is considered. Several examples are used to demonstrate the capability of the proposed method in finding the best reinforcement layout design.
Go to article

Authors and Affiliations

Hao Cui
1
ORCID: ORCID
Longfa Xie
1
ORCID: ORCID
Min Xiao
1
ORCID: ORCID
Manfang Deng
1
ORCID: ORCID

  1. College of Civil Engineering and Architecture, Jiangxi Science and Technology Normal University, No.605 Fenglin Avenue, 330013, Nanchang, China
Download PDF Download RIS Download Bibtex

Abstract

One of the most important problems of contemporary humanities is the issue of memory and the discourse around the concept of trauma. The last is the experience of two North Caucasian nations, the Ingush and the Chechens, who were deported to Kazakhstan in 1944 on Stalin’s orders. The purpose of this article is to expose the way made by Chechen and Ingush literature from an arbitrarily imposed oblivion to an attempt to dismantle the institutionalized memory of these events. Books belonging to the canon of Russian literature (e.g. the novel The Inseparable Twins (1987) by Anatoly Pristavkin or the “novel‑idyll” A Gloom is Cast Upon the Ancient Steps (2000) by Alexander Chudakov) provide merely the background to the study. The main subject of the researcher’s interest are works written by less known Chechen and Ingush authors (Said Chakhkiyev, Gabatsu Lokaev, Yusup Chakhkiyev and Issa Kodzoyev). The fiction and non‑fiction both reveal a post‑traumatic syndrome and a victim narrative. The article presents a number of examples showing how the subject of deportation appeared in literature and how psychological memory was dominated by the compulsion of memory. The author’s attention is also directed to the practices of censoring the past and using memory for current political purposes.
Go to article

Bibliography

Assmann J., Pamięć kulturowa. Pismo, zapamiętywanie i polityczna tożsamość w cywilizacjach starożytnych, tłum. A. Kryczyńska‑Pham, Warszawa 2008.

Avtorkhanov A. (Uralov A.), Narodoubiystvo v SSSR. Ubiystvo chechenskogo naroda, München 1952.

Chakhkiyev S., Zolotyye stolby, perev. G. Rusakov, Nalʹchik 1994.

Chakhkiyev Yu., Golos iz ada, perev. A. Bazorkina, Nazranʹ 2004.

Czudakow A., Zabrali nam Rosję… Powieść‑idylla, przeł. A. Czendlik, Warszawa 2016.

Gilëva E., K voprosu o dokumentalʹnosti russkoyazychnoy prozy I.A. Kodzoyeva, „Vestnik Buryatskogo gosudarstvennogo universiteta. Pedagogika. Filologiya. Filosofiya” 2017, № 6.

Halbwachs M., Les Cadres sociaux de la mémoire, Paris 1925.

Isakiyeva Z., Pravovoye polozheniye chechentsev, deportirovannykh v tsentralʹnyy Kazakhstan v 1940‑e gg., „Gramota” 2016, № 6 (68), ch. 2.

Jachina G., Zulejka otwiera oczy, przeł. H. Chłystowski, Warszawa 2017.

Kadyrov pozvolil provesti traurnyye meropriyatiya v godovshchinu deportatsii, [v:] https://www.kavkaz‑uzel.eu/articles/332118/.

Kak Kadyrov 23 fevralya ustroil iz pominok prazdnik, [v:] https://www.kavkaz‑uzel.eu/articles/298148/.

Kodzoyev I., Kazakhstanskiy dnevnik, [v:] Ego zhe, Nad bezdnoy, Nazranʹ 2010.

Kodzoyev I., Obval, Nazranʹ 2010. Lokayev G., Spetspereselentsy, Groznyy 2006.

Nora P., Między pamięcią a historią: Les lieux de Memoire, „Tytuł Roboczy: Archiwum” 2009, nr 2.

Pristavkin A., Nochevala tuchka zolotaya, Moskva 2015.

Rakhayev Dzh., Analiziruya travmu: Istoriografiya deportatsii karachayevtsev i balkartsev kak forma kulʹturnoy pamyati, „Lyudi i teksty. Istoricheskiy alʹmanakh” 2014.

Ricoeur P., Pamięć, historia, zapomnienie, przeł. J. Margański, Kraków 2006.

Solzhenitsyn A., Arkhipelag GULag, t. 1, Paris 1973.

Szpociński A., Miejsca pamięci ((lieux de mémoire), „Teksty Drugie” 2008, nr 4.

Tak eto bylo. Natsionalʹnyye repressii v SSSR. 1919‑1952 gody. Khudozhestvenno-‑dokumentalʹnyy sbornik v 3‑kh tomakh, sost. S. Aliyeva, Moskva 1993.

Tochiyeva Kh., Daliyeva E., Roman „Obval” Issy Kodzoyeva. Spetsifika abrechestva v usloviyakh deportatsii, „Izvestiya chechenskogo gosudarstvennogo universiteta” 2007, № 1.

Zawisko T., Czeczenia: demontaż pamięci, „Nowa Europa Wschodnia” 2014, nr 1.
Go to article

Authors and Affiliations

Joanna Kula
1
ORCID: ORCID

  1. Uniwersytet Wrocławski
Download PDF Download RIS Download Bibtex

Abstract

In the present work, a constitutive model of materials undergoing the plastic strain induced phase transformation and damage evolution has been developed. The model is based on the linearized transformation kinetics. Moreover, isotropic damage evolution is considered. The constitutive model has been implemented in the finite element software Abaqus/Explicit by means of the external user subroutine VUMAT. A uniaxial tension test was simulated in Abaqus/Explicit to compare experimental and numerical results. Expansion bellows was also modelled and computed as a real structural element, commonly used at cryogenic conditions.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Maciej Ryś

This page uses 'cookies'. Learn more