Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article reviews chosen topics related to the development of Information Quantum Technologies in the major areas of measurements, communications, and computing. These fields start to build their ecosystems which in the future will probably coalesce into a homogeneous quantum information layer consisting of such interconnected components as quantum internet, full size quantum computers with efficient error corrections and ultrasensitive quantum metrology nodes stationary and mobile. Today, however, the skepticism expressing many doubts about the realizability of this optimistic view fights with a cheap optimism pouring out of some popular press releases. Where is the truth? Financing of the IQT by key players in research, development and markets substantially strengthens the optimistic side. Keeping the bright side with some reservations, we concentrate on showing the FAST pace of IQT developments in such areas as biological sciences, quantum evolutionary computations, quantum internet and some of its components.
Go to article

Authors and Affiliations

Katarzyna Nałęcz-Charkiewicz
1
Jana Meles
1
Wioleta Rzęsa
1
Andrzej A. Wojciechowski
1
Eryk Warchulski
1
Kacper Kania
1
Justyna Stypułkowska
1
Grzegorz Fluder
1
Ryszard S. Romaniuk
1

  1. Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Network on chip (NoC) is presented as a promising solution to face off the growing up of the data exchange in the multiprocessor system-on-chip (MPSoC). However, the traditional NoC faces two main problems: the bandwidth and the energy consumption. To face off these problems, a new technology in MPSoC, namely, optical network-on-chip (ONoC) has been introduced which it uses the optical communication to guaranty a high performance in communication between cores. In addition, wavelength division multiplexing (WDM) is exploited in ONoC to reach a high rate of bandwidth. Nevertheless, the transparency nature of the ONoC components induce crosstalk noise to the optical signals, which it has a direct effect to the signal-to-noise ratio (SNR) then decrease the performance of the ONoC. In this paper, we proposed a new system to control these impairments in the network in order to detect and monitor crosstalk noise in WDM-based ONoC. Furthermore, the crosstalk monitoring system is a distributed hardware system designed and test with the different optical components according the various network topology used in ONoC. The register-transfer level (RTL) hardware design and implementation of this system can result in high reliability, scalability and efficiency with running time less than 20 ms.

Go to article

Authors and Affiliations

Ahmed Jedidi

This page uses 'cookies'. Learn more