Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present research work involves the study of the 3-D surface microtexture of sputtered indium tin oxide (ITO) prepared on glass substrates by DC magnetron at room temperature. The samples were annealed at 450°C in air and were distributed into five groups, dependent on ambient combinations applied, as follows: I group, using argon (Ar); II group, using argon with oxygen (Ar+O2); III group, using argon with oxygen and nitrogen (Ar+O2+N2); IV group, using argon with oxygen and hydrogen (Ar+O2+H2); and V group, using argon with oxygen, nitrogen, and hydrogen (Ar+O2+N2+H2). The characterization of the ITO thin film surface microtexture was carried out by atomic force microscopy (AFM). The AFM images were stereometrically quantitatively analyzed to obtain statistical parameters, by ISO 25178-2: 2012 and ASME B46.1-2009. The results have shown that the 3-D surface microtexture parameters change in accordance with different fabrication ambient combinations.
Go to article

Authors and Affiliations

Ş. Ţălu
1
ORCID: ORCID
S. Kulesza
2
ORCID: ORCID
M. Bramowicz
2
ORCID: ORCID
K. Stępień
3
ORCID: ORCID
D. Dastan
4

  1. Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Cluj-Napoca, 400020, Romania
  2. University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, 11 Oczapowskiego Str., 10-719 Olsztyn, Poland
  3. Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Aleja 1000-lecia Państwa Polskiego 7, 25-314 Kielce, Poland
  4. Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, Georgia 30332, USA
Download PDF Download RIS Download Bibtex

Abstract

The current study were performed in order to assess the fabrication possibility of the metal-ceramic composites based on nanocrystalline substrates. The influence of the variable time of the high energy ball-milling (10, 30 and 50 h) on the structure, pores morphology and microhardness of Ti/ZrO2 and Ti/Al2O3 compositions was studied. The X-ray diffraction analysis confirmed the composite formation for all milling times and sintering in the case of Ti/ZrO2 system. Decomposition of substrates during milling process of Ti/Al2O3 system was also observed. Additionally, the changes of lattice parameter as a function of milling time were studied. The morphology of powders and the microstructure of the sintered samples were observed by scanning electron microscopy (SEM). Also, analysis of microhardness and pores structure were performed.

Go to article

Authors and Affiliations

G. Dercz
I. Matuła
W. Gurdziel
N. Kuczera

This page uses 'cookies'. Learn more