Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this article a three-dimensional mathematical model of radiofrequency ablation during open-heart surgery is presented. It was developed to study temperature field distribution into myocardial tissue. This model uses an anatomically correct 3D model for the left atrium, obtained by magnetic resonance imaging (MRI) processing of a patient; takes into account thermoelectric characteristic differences depending on the area of electric current application; considers cooling by the air flow. An ex-vivo experiment on the pig’s heart was performed where the depth of myocardium tissue damage was measured for the model validation. It was shown that the deviation of the model data from the experiment is within the limits of instrumental measurement error. The developed model is proposed to be used for heart ablation procedures planning, or new equipment development.

Go to article

Authors and Affiliations

Yurii Stasiuk
Vitaliy Maksymenko
Maryna Sychyk
Download PDF Download RIS Download Bibtex

Abstract

The progressive development of miniature systems increases the demand for miniature parts. Reducing the size of manufactured components on one hand is a serious challenge for traditional technologies, but on the other hand, mainly by removing the energy barrier opens the possibility of using other unconventional techniques. A good example is the ultrasonic excitation of the punch during the micro-upsetting process. The anti-barreling phenomenon and dependent on the amplitude of vibrations, intensive deformation of the surface layers in contact with the tools at both ends of the sample was noted. Based on the measured strains and stresses, an increase in temperature in the extreme layers to approx. 200°C was suggested. By adopting a simplified dynamic model of the test stand, the possibility of detaching the surface of the punch from the surface of the sample was demonstrated.

Go to article

Authors and Affiliations

W. Presz

This page uses 'cookies'. Learn more