Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The subject of the article is aspects of PV modules and cells measurement, with the use of natural sunlight. A light source is an important element during calibration and measurements of solar cells and modules. All designers of artificial light sources try to recreate natural light using so called measurement tables. The correctly performed measurement, i.e. meeting all the appropriate atmospheric conditions, guarantees obtaining the result with the use of a reference spectrum. The article has two main aims. The first aim of the article is to answer the question asked earlier - if the sunlight spectrum registered in appropriate conditions is so good that it serves as the reference spectrum - then, in practice, during measurements carried out with its use, certain problems occur regarding the correct measurement results or their interpretation. The second aim regards presenting detailed numeric procedures in order to enable readers to associate air mass with geographical coordinates and Local Solar Time of their study/laboratory location. Moreover, having the data from their local meteorological station, they will be able to estimate the occurrence of the measurement spectral error of the tested cell/module not only from the group referred to in the article but also for others, for which they have a dedicated characteristics of spectral response.

Go to article

Authors and Affiliations

T. Rodziewicz
M. Rajfur
Download PDF Download RIS Download Bibtex

Abstract

Oxy-fuel combustion (OFC) belongs to one of the three commonly known clean coal technologies for power generation sector and other industry sectors responsible for CO2emissions (e.g., steel or cement production). The OFC capture technology is based on using high-purity oxygen in the combustion process instead of atmospheric air. Therefore flue gases have a high concentration of CO2- Due to the limited adiabatic temperature of combustion some part of CO2must be recycled to the boiler in order to maintain a proper flame temperature. An integrated oxy-fuel combustion power plant constitutes a system consisting of the following technological modules: boiler, steam cycle, air separation unit, cooling water and water treatment system, flue gas quality control system and CO2processing unit. Due to the interconnections between technological modules, energy, exergy and ecological analyses require a system approach. The paper present the system approach based on the 'input-output' method to the analysis of the: direct energy and material consumption, cumulative energy and exergy consumption, system (local and cumulative) exergy losses, and thermoecological cost. Other measures like cumulative degree of perfection or index of sustainable development are also proposed. The paper presents a complex example of the system analysis (from direct energy consumption to thermoecological cost) of an advanced integrated OFC power plant.

Go to article

Authors and Affiliations

Andrzej Ziębik
Paweł Gładysz

This page uses 'cookies'. Learn more