Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article analyzes soil organic carbon (SOC) content of in Poland from 2015 to 2021. The research aims to determine SOC levels and their dependence on soil agronomic categories and drought intensity. Soil samples from 1011 farms across 8 Polish voivodships were collected for analysis, all from the same agricultural plots. SOC determination was conducted using the Tiurin method. The results indicate a low SOC content nationwide (0.85-2.35%). Heavy soils exhibited higher SOC accumulation compared to light soils. Moreover, significant drought impact led to decreased SOC content in affected regions. Scientific evidence underscores a declining trend in organic carbon stock within agricultural soils, attributed to natural soil changes and unsustainable management practices. This decline is concerning given the crucial role of SOC in soil health, quality, and crop productivity. Therefore, it is imperative to monitor and address areas with low SOC levels to enhance SOC abundance. Furthermore, when used as a whole-cell biocatalyst in a low-cost upflow MFC, the Morganella morganii-rich SF11 consortium demonstrated the highest voltage and power density of 964.93±1.86 mV and 0.56±0.00 W/m3, respectively. These results suggest that the SF11 bacterial consortium has the potential for use in ceramic separator MFCs for the removal of penicillin and electricity generation.
Go to article

Bibliography

  1. Amoah-Antwi, C., Kwiatkowska-Malina, J., Szara, E., Fentona, O., Thornton, S.F. & Malina, G. (2022). Title of article, Assessing Factors Controlling Structural Changes of Humic Acids in Soils Amended with Organic Materials to Improve Soil Functionality, Agronomy, 12(2), pp. 1–17. DOI:10.3390/agronomy12020283.
  2. Breś, W., Golcz, A., Komosa, A., Kozik, E. & Tyksiński, W. (1997). Fertilization of garden plants. Edited by A.R. w Poznaniu. Poznań (1997).
  3. Castañeda-Gómez, L., Lajtha, K., Bowedena, R., Jauhar, F.N.M., Jai, J., Feng, X. & Simpson, M.J. (2023). Soil organic matter molecular composition with long-term detrital alterations is controlled by site-specific forest properties, Global Change Biology, 29(1), pp. 243–259. DOI:10.1111/gcb.16456.
  4. Communication from The Commission to The Council, The European Parliament, The European Economic and Social Committee and The Committee of The Regions - Thematic Strategy for Soil Protection (2006) Commission of The European Communities. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0231:FIN:EN:PDF.
  5. Cotrufo, M.F. & Lavallee, J.M. (2022). Chapter One - Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration, Advances in Agronomy, 172, pp. 1–66.
  6. Dignac, M.F., Derrein, D., Barre, P., Barot, S., Cécillon, L., Chenu, C., Chevalier, T., Freschet, G.T., Garnier, P., Guenet, B., Hedde, M., Klumpp, K., Laschermes, G., Maron, P.A., Nunan, N., Rumet, K. & Basile-Doelsch, I. (2017). Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review, Agronomy for Sustainable Development, 37(2). DOI:10.1007/s13593-017-0421-2.
  7. Dynarski, K.A., Bossio, D.A. & Scow, K.M. (2020). Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration, Frontiers in Environmental Science, 8. DOI:10.3389/fenvs.2020.514701.
  8. Francaviglia, R. Almagro, M. & Vicente-Vicente, J.L., (2023). Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options, Soil Systems, 7(17), pp. 1–35. DOI:10.3390/soilsystems7010017.
  9. Gerke, J. (2022). The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage, Soil Systems, 6(2). DOI:10.3390/soilsystems6020033.
  10. Giachin, G., Neprawiszta, R., Mandaliti, W., Melino, S., Morgan, A., Scaini, D., Mazzei, P., Piccalo, A., Lagname, G., Paci, M. & Leita, L. (2017). The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein, PLoS ONE, 12(11), pp. 1–16. DOI:10.1371/journal.pone.0188308.
  11. Gonet, S.S. &Markiewicz, M. (2007). The role of organic matter in the environment, PTSH, Wrocław 2007.
  12. Intergovernmental Panel on Climate Change (2022). Risk management and decision-making in relation to sustainable development, Climate Change and Land. DOI:10.1017/9781009157988.009.
  13. Kiryluk, A. & Kostecka, J. (2023). Sustainable development in rural areas in the perspective of a decade of ecosystem restoration, Ekonomia i Środowisko - Economics and Environment, 83(4). DOI:10.34659/eis.2022.83.4.535.
  14. Kuś, J. (2015). Soil organic matter - meaning, content and balancing, Studies and Reports IUNG-PIB, 45(19), pp. 27–53. DOI:10.26114/sir.iung.2015.45.02. (in Polish)
  15. Lal, R., Follertt, R.F., Stewart, B.A. & Kimble, J.M. (2007). Soil carbon sequestration to mitigate climate change and advance food security, Soil Science, 172(12), pp. 943–956. DOI:10.1097/ss.0b013e31815cc498.
  16. Lipiński, W., Lipińska, H., Kornas, R. & Watros, A.(2020). Selected agrochemical parameters of grassland soils in Poland, Agronomy Science, 75(2), pp. 5–23. DOI:10.24326/as.2020.2.1. (in Polish)
  17. Łądkiewicz, K., Wszȩdyrówny-Nast, M. & Jaskiewicz, K. (2017). Comparison of different methods for determination of organic matter content, Scientific Review Engineering and Environmental Sciences, 26(1), pp. 99–107. DOI:10.22630/PNIKS.2017.26.1.09.
  18. Myśleńska, E. (2001). Organic soils and laboratory methods of their research, I PWN, Warszawa 2021. (in Polish)
  19. Nachtergaele, F.O., Petri, M. & Biancalani, R. (2016). Land degradation, World Soil Resources and Food Security. DOI:10.4337/9781788974912.l.4.
  20. Nasiri, S., Andalibi,B., Tavakoli, A., Delavar, M.A., El-Keblawy, A., Van Zwieten, L. & Mastinu, A. (2023) The mineral biochar alters the biochemical and microbial properties of the soil and the grain yield of Hordeum vulgare L. under drought stress, Land, 12(3), pp. 1–16. DOI:10.3390/land12030559.
  21. Newton, P., Cyvita, N., Frankel-Goldwater, L., Bartel, K. & Johno, C. (2020). What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes, Frontiers in Sustainable Food Systems, 4(October), pp. 1–11. DOI:10.3389/fsufs.2020.577723.
  22. Pietrzak, S. & Hołaj-Krzak, J. T. (2022). The content and stock of organic carbon in the soils of grasslands in Poland and the possibility of increasing its sequestration. Journal of Water and Land Development, 54, 68–76. https://doi.org/10.24425/jwld.2022.141556
  23. Pikuła, D. & Rutkowska, A. (2017). Fractional composition of humus as a characteristic of the quality of organic matter, Studies and Reports IUNG-PIB, 53(7), pp. 81–91. DOI:10.26114/sir.iung.2017.53.06.(in Polish)
  24. Robertson, A.D., Paustain, K., Ogle, S., Wallenstein M.D., Lugato, E. & Cotrufo, M.F. (2019). Unifying soil organic matter formation and persistence frameworks: The MEMS model, Biogeosciences, 16(6), pp. 1225–1248. DOI:10.5194/bg-16-1225-2019.
  25. Rusco, E., Jones, R. & Bidoglio, G. (2001). Organic Matter in the soils of Europe: Present status and future trends Institute for Environment and Sustainability European Soil Bureau, European Commission Joint Research Centre [Preprint], (October 2001).
  26. Ryżak, M., Bartmiński, P. & Biegaowski, A. (2009). Methods of determining the granulometric composition of mineral soils, Acta Agrophysica, 175(4), pp. 34-39. http://www.old.acta-agrophysica.org/artykuly/acta_agrophysica/ActaAgr_175_2009_4_1_1.pdf. (in Polish)
  27. Schmidt, M.W.I., Torn, M., Abiven, S., Dittmar, T., Guggenberger, G., Janssen, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.AC., Nannipieri, P., Rasse, D., Weiner, S. & Trumbore, S.E. (2011). Persistence of soil organic matter as an ecosystem property, Nature, 478(7367), pp. 49–56. DOI:10.1038/nature10386.
  28. The European Green Deal (2019) European Commission [Preprint], (December), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FIN.
Go to article

Authors and Affiliations

Urszula Zimnoch
1 2
Paulina Bogusz
1 3
Marzena Sylwia Brodowska
1
Jacek Michalak
4

  1. Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Poland
  2. Complexor Fertilizer Group, Stawiski, Poland
  3. Fertilizers Research Group, Łukasiewicz Research Network–New Chemical Syntheses Institute, Puławy, Poland
  4. Regional Chemical and Agricultural Station in Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

A Polish translation, by Michał Wojciechowski, of the proverbs attributed to Aesop (based on Perry’s edition), with introduction and notes. These aphorisms exhibit a number of analogies to the Aesopic fables. Some may stem from Aesop, although it is impossible to say with certainty how many and which ones.
Go to article

Authors and Affiliations

Michał Wojciechowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

An efficient system of micropropagation via somatic embryogenesis from root-derived callus was established in

Arabica coffee (Coffea arabica L.). Twenty-six callus lines were induced on MS (Murashige and Skoog, 1962)

medium supplemented with combinations of NAA (0, 0.1, 0.5, 1 and 2 mg/L) plus BA (0, 1 and 2 mg/L), or 2,4-D

(0, 0.1, 0.5, 1 and 2 mg/L) plus TDZ (0, 1 and 2 mg/L). Subsequently, two types of somatic embryos were obtained

from callus cultures and named S-type and I-type embryos. The S-type embryos were obtained from an 18-monthold

callus line which was induced and maintained at 2 mg/L TDZ and 0.1 mg/L 2,4-D near the end of each period

of the subculture. These embryos have a developmental barrier, which did not pass through the torpedo stage

and could be overcome by a supplement of 2 or 5 mg/L BA. The I-type embryos were induced from 3-month-old

callus when transferred onto induction media, i.e., MS supplemented with TDZ (2 and 5 mg/L) plus 2,4-D (0 and

0.1 mg/L). The significantly highest response, i.e., 13.3 embryos per callus clump was obtained at 2 mg/L TDZ.

In this study, the results reveal that TDZ has a crucial effect on embryogenic callus induction, proliferation and

subsequent somatic embryogenesis.

Go to article

Authors and Affiliations

Yi-Chieh Wang
Meng-Ze Lin
Bin Huang
Hsiao-Hang Chung
Jen-Tsung Chen
Download PDF Download RIS Download Bibtex

Abstract

The major aim of the study was to identify the relationships of photosynthetic pigments with elemental contents of plants exposed to various ambient air conditions. Lolium multiflorum L. plants were exposed at five sites varying in environmental characteristics, including potential air pollution levels. The effect of air pollution by trace elements on plants was examined. Selected trace elements (Pb, Cd, As, Ni, Cr), some macro-elements as well as chlorophyll content were measured after each of four series. The graphical visualization revealed groups of sites with similar response of elements and chlorophyll contents. Sites located outside the city were grouped into one, and two urban sites were grouped into another. The trace element contents were relatively low and, excluding Ni and As, did not reach toxic levels in dry mass of leaves. However, some relations could be noted, which indicates the sensitivity of the photosynthetic process even at low levels of trace elements in ambient air. Chlorophyll b was found to be more sensitive to most of the analyzed trace elements than chlorophyll a. The results revealed chlorophylls, K and Na as indicators of plant stress caused by trace elements present in ambient air, even at relatively low levels.
Go to article

Authors and Affiliations

Klaudia Borowiak
Anna Budka
Anetta Hanć
Dariusz Kayze
Marta Lisiak
Janina Zbierska
Danuta Barałkiewicz
Donata Iwaniuk
Natalia Łopatka
Download PDF Download RIS Download Bibtex

Abstract

I n t r o d u c t i o n: Hypoplastic left heart syndrome (HLHS) is a congenital heart anomaly that is diagnosed prenatally or postnatally. The prenatal diagnosis leads to limiting the rate of systemic complications in the preoperative period due to optimization of the early therapeutic management.

O b j e c t i v e: The objective of the study is to determine the effect of prenatal diagnostic management of HLHS on the condition of newborns and the frequency of antibiotherapy employment prior to the first stage of surgical treatment.

Me t h o d o l o g y: The study included 95 children with HLHS operated on in the years 2014–2016. The cohort was divided into two groups: newborns with a prenatally diagnosed heart defect (50 children — 52.6%) and neonates with the defect diagnosed after birth (45 children — 47.4%). The data of the patients were analyzed based on their medical records.

R e s u l t s: The mean age of the children upon admission was 3.86 days in the group of patients with the prenatally diagnosed heart defect (PreHLHS) and 7.41 days in the group of newborns without the prenatal diagnosis (PostHLHS) (p = 0.001). In 60% of the PreHLHS group patients (30/50), at least one antibiotic was administered, while in the PostHLHS group, antibiotherapy was employed in 93.3% (42/45) cases (p = 0.001). Bacteriological tests demonstrated pathogen growth in 33 children (36% and 33.3%, respectively), what accounted for 34.7% of the entire cohort. On the average, the first antibiotic was introduced on the 6.55th day of life in the PreHLHS group and on the 2.73th day in the PostHLHS group (p = 0.005). Th e most profound differences in antibiotic employment involved aminoglycosides. The aforementioned type of antibiotic medications was administered to 6% of the children with the prenatal diagnosis and to 17.8% of the children diagnosed postnatally (p = 0.042).

C o n c l u s i o n s: Preoperative antibiotherapy in children with HLHS was employed more frequently than it would be indicated by microbiology tests results. Antibiotics were observed to be introduced more commonly and earlier in the newborns with the postnatally diagnosed congenital heart defect.

Go to article

Authors and Affiliations

Magdalena Czerżyńska
Mateusz Mleczko
Julita Sacharczuk
Janusz H. Skalski
Tomasz Mroczek
Download PDF Download RIS Download Bibtex

Abstract

Polymer mixed-matrix nanocomposite membranes were prepared by a wet-phase inversion method and used in ultrafiltration processes to treat wastewater treatment plant effluent spiked with organic micropollutants. The effects of halloysite (Hal), TiO2, and functionalized single-walled carbon nanotube (SWCNT-COOH) nanofillers on the treatment efficiency, permeability loss, and fouling behavior of polyethersulfone (PES) membranes were investigated and compared with those of a pristine PES membrane. The nanocomposite membranes exhibited lower porosity and stronger negative surface charge because of the added hydrophilic nanofillers. The PES-Hal membrane achieved the optimal balance of permeability and micropollutant removal owing to enhanced pollutant adsorption on the membrane surface and the creation of an easily removable cake layer (i.e., reversible fouling). The PES-SWCNT-COOH membrane demonstrated the highest treatment efficiency, but also the high permeability loss. In contrast, PES-TiO2 exhibited excellent antifouling properties, but poorer treatment capabilities.
Go to article

Bibliography

  1. Adeniyi, A., Mbaya, R., Popoola, P., Gomotsegang, F., Ibrahim, I. & Onyango, M. (2020). Predicting the fouling tendency of thin film composite membranes using fractal analysis and membrane autopsy, Alexandria Engineering Journal, 59, 6, pp. 4397-4407. DOI:10.1016/j.aej.2020.07.046
  2. Arif, Z., Sethy, N.K., Mishra, P.K. & Verma, B. (2019). Antifouling behaviour of PVDF/TiO2 composite membrane: a quantitative and qualitative assessment, Iranian Polymer Journal, 19, 28, pp. 301-312. DOI:10.1007/s13726-019-00700-y
  3. Bassyouni, M., Abdel-Aziz, M.H., Zoromba, M.Sh., Abdel-Hamid, S.M.S. & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification, Journal of Industrial and Engineering Chemistry, 73, pp. 19-46. DOI:10.1016/j.jiec.2019.01.045
  4. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2021). New generation of semipermeable membranes with carbon nanotubes for water and wastewater treatment: Critical review, Archives of Environmental Protection, 47, 3, pp. 3-27, DOI:10.24425/aep.2021.138460
  5. Bohdziewicz, J., Dudziak, M., Kamińska, G. & Kudlek, E. (2016). Chromatographic determination and toxicological potential evaluation of selected micropollutants in aquatic environment - analytical problems, Desalination and Water Treatment, 57, pp. 1361-1369. DOI:10.1080/19443994.2015.1017325
  6. Bu, F., Gao, B., Yue, Q., Liu, C., Wang, W. & Shen, X. (2019). The Combination of Coagulation and Adsorption for Controlling Ultrafiltration Membrane Fouling in Water Treatment, Water, 11, pp. 1-13. DOI:10.3390/w11010090
  7. Buruga, K., Song, H., Shan, J., Bolan, N., Thimmarajampet Kalathi, J. & Kim, K-H. (2019). A review on functional polymer-clay based nanocomposite membranes for treatment of water, Journal of Hazardous. Materials, 379, pp. 1-27. DOI:10.1016/j.jhazmat.2019.04.067
  8. Dudziak, M. & Burdzik-Niemiec, E. (2017). Ultrafiltration through modified membranes in wastewater treatment containing 17β-estradiol and bisphenol A, Przemysł Chemiczny, 96, pp. 448-452, DOI: 10.15199/62.2017.2.35 (in Polish).
  9. Esfahani, M.R., Aktij, S.A., Dabaghian, Z., Firouzjaei, M.D., Rahimpour, A., Eke, J.; Escobar, I.C., Abolhassani, M., Greenlee, L.F., Esfahani, A.R., Sadmani, A. & Koutahzadeh, N. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications, Separation and Purification Technolology, 213, pp. 465-499. DOI:10.1016/j.seppur.2018.12.050
  10. Farjami, M., Vatanpour, V. & Moghadassi, A. (2020). Effect of nanoboehmite/poly(ethylene glycol) on the performance and physiochemical attributes EPVC nano-composite membranes in protein separation, Chemical Engineering Research and Design, 156, pp. 371-383. DOI:10.1016/j.cherd.2020.02.009
  11. Gamoń, F., Tomaszewski, M., Cema, G. & Ziembińska-Buczyńska, A. (2022). Adsorption of oxytetracycline and ciprofloxacin on carbon-based nanomaterials as affected by pH, Archives of Environmental Protection, 48, 2, pp. 34-41. DOI:10.24425/aep.2022.140764
  12. Ghaemi, N., Madaeni, S.S., Alizadeh, A., Rajabi, H. & Daraei, P. (2011). Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides, Journal of Membrane Science, 382, pp. 135-147. DOI:10.1016/j.memsci.2011.08.004
  13. Haas, R., Opitz, R. & Grischek, T. (2019). The AquaNES Project: Coupling Riverbank Filtration and Ultrafiltration in Drinking Water Treatment, Water, 11, pp. 1-14. DOI:10.3390/w11010018.
  14. Hao, S., Jia, Z., Wen, J., Li, S., Peng, W., Huang, R. & Xu, X. (2021). Progress in adsorptive membranes for separation – A review, Separation and Purification Technology, 255, 117772. DOI:10.1016/j.seppur.2020.117772.
  15. Inurria, A., Cay-Durgun, P., Rice, D., Zhang, H., Seo, D.-K., Lind, M.L. & Perreault, F. (2019). Polyamide thin-film nanocomposite membranes with graphene oxide nanosheets: Balancing membrane performance and fouling propensity, Desalination, 451, pp. 139-147. DOI:10.1016/j.desal.2018.07.004.
  16. Kamińska, G. (2022). Modification of ultrafiltration membranes with nanoparticles and their application, Wydawnictwo Politechniki Śląskiej, Gliwice 2022. (in Polish)
  17. Kamińska, G. & Bohdziewicz, J. (2018). Separation of selected organic micropollutants on ultrafiltration membrane modified with carbon nanotubes.Ochrona. Środowiska, 40, 4, pp. 37-42. (in Polish)
  18. Kamińska, G., Bohdziewicz, J., Calvo, J.I., Prádanos, P., Palacio, L. & Hernández, A. (2015). Fabrication and characterization of polyethersulfone nanocomposite membranes for the removal of endocrine disrupting micropollutants from wastewater. Mechanisms and performance, Journal of Membrane Science, 493, pp. 66-79. DOI:10.1016/j.memsci.2015.05.047
  19. Kamińska, G., Bohdziewicz, J., Palacio, L., Hernández, A. & Prádanos, P. (2016). Polyacrylonitrile membranes modified with carbon nanotubes: characterization and micropollutants removal analysis, Desalination and Water Treatment, 57, pp. 1344-1353. DOI:10.1080/19443994.2014.1002277
  20. Kamińska, G., Pronk, W. & Traber, J. (2020). Effect of coagulant dose and backflush pressure on NOM membrane fouling in inline coagulation-ultrafiltration, Desalination and Water Treatment, 199, pp. 188-197. DOI:10.5004/dwt.2020.25657.
  21. Leo, C.P.; Chai, W.K.; Mohammad, A.W., Qi, Y., Hoedley, A.F.A. & Chai, S.P. (2011). Phosphorus removal using nanofiltration membranes, Water Science and Technology 64, pp.199-205. DOI:10.2166/wst.2011.598.
  22. Mao, Y., Huang, Q. Meng, B., Zhou, K., Liu, G., Gigliuzza, A., Drioli, E. & Jin, W. (2020). Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation, Journal of Membrane Science, 611, 118364. DOI:10.1016/j.memsci.2020.118364.
  23. Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48, 1, pp. 75-82. DOI:10.24425/aep.2022.140546.
  24. Maximous, N., Nakhla, G., Wan, W. & Wong, K. (2009). Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration, Journal of Membrane Science, 341, pp. 67–75. DOI:10.1016/j.memsci.2009.05.040.
  25. Mozia, S.; Grylewicz, A.; Zgrzebnicki, M.; Darowna, D. & Czyżewski, A. (2019). Investigations on the properties and performance of mixed matrix polyethersulfone membranes modified with halloysite nanotubes, Polymers-Basel. 11, 671, pp. 1-18. DOI:10.3390/polym11040671.
  26. Muthumareeswaran, M.R. & Agarwal, G.P. (2014). Feed concentration and pH effect on arsenate and phosphate rejection via polyacrylonitrile ultrafiltration membrane, Journal of Membrane Science, 468, pp. 11-19. DOI:10.1016/j.memsci.2014.05.040.
  27. Nasir, A., Masood, F., Yasin, T. & Hammed, A. (2019). Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications, Journal of Industrial and Engineering Chemistry, 79, pp. 29-40. DOI:10.1016/j.jiec.2019.06.052.
  28. Nguyen, M.N., Trinh, P.B., Butkhardt, C.J. & Schafer, A.I. (2021). Incorporation of single-walled carbon nanotubes in ultrafiltration support structure for the removal of steroid hormone micropollutants, Separation and Purification Technology, 264, 118405. DOI:10.1016/j.seppur.2021.118405.
  29. Niedergall, K., Bach, M., Hirth, T., Tovar, G.E.M. & Schiestel, T. (2014). Removal of micropollutants from water by nanocomposite membrane adsorbers, Separation and Purification Technology, 131, 27, pp. 60-68. DOI:10.1016/j.seppur.2014.04.032.
  30. Rogowska, J., Cieszynska-Semenowicz, M., Ratajczyk, W. & Wolska, L. (2020). Micropollutants in treated wastewater, Ambio, 49(2), pp. 487-503. DOI:10.1007/s13280-019-01219-5
  31. Saki, H., Alemayehu, E., Schomburg, J. & Lennartz, B. (2019). Halloysite nanotubes as adsorptive material for phosphate removal from aqueous solution, Water 11, 2, 203. DOI:10.3390/w11020203.
  32. Shaban, M., AbdAllah, H., Said, L. & Ahmed, A.M. (2019). Water desalination and dyes separation from industrial wastewater by PES/TiO2NTs mixed matrix membranes, Journal of Polymer Research, 26, 181, pp. 1-12. DOI:10.1007/s10965-019-1831-4.
  33. Shakak, M., Rezaee, R., Maleki, A., Jafari, A., Safari, M., Shahmoradi, B., Daraei, H. & Lee, S-M. (2019). Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions, Environmental Technology & Innovation, 17, 100529. DOI:10.1016/j.eti.2019.100529.
  34. Suhalim, N.S., Kasim, N., Mahmoudi, E., Shamsudin, I.J., Mohammad, A.W., Zuki, F.M. & Jamari, N. (2022). Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview, Nanomaterials, 12, 437. DOI:10.3390/nano12030437.
  35. Vatanpour, V., Mansourpanah, Y., Soroush Mousavi Khadem, S., Zinadini, S., Dizge, N., Reza Ganjali, M., Mirsadeghi, S., Rezapour, M., Reza Saeb, M. & Karimi-Male, H. (2021). Nanostructured polyethersulfone nanocomposite membranes for dual protein and dye separation: Lower antifouling with lanthanum (III) vanadate nanosheets as a novel nanofiller, Polymer Testing, 94, pp. 107040. DOI:10.1016/j.polymertesting.2020.107040.
  36. Vatanpour, V., Madaeni, S.S., Rajabi, L., Zinadini, S. & Derakhshan, A.A. (2012). Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes, Journal of Membrane Science, 401-402, pp. 132-143. DOI:10.1016/j.memsci.2012.01.040.
  37. Wang, S., Yao, S., Du, K., Yuan, R., Chen, H., Wang, F. & Zhou, B. (2021). The mechanisms of conventional pollutants adsorption by modified granular steel slag, Environmental Engineering Research, 26, 1, 190352. DOI:10.4491/eer.2019.352.
  38. Zhang, J., Nguyen, M.N., Li, Y., Yang, C. & Schafer, A.I. (2020). Steroid hormone micropollutant removal from water with activated carbon fiber-ultrafiltration composite membranes, Journal of Hazardous Materials, 391, 122020. DOI:10.1016/j.jhazmat.2020.122020.
  39. Zhang, X., Wang, D.K., Lopez, D.R.S. & Diniz da Costa, J. (2014). Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment, Chemical Engineering Journal, 236, pp. 314-322. DOI:10.1016/j.cej.2013.09.059.
Go to article

Authors and Affiliations

Gabriela Kamińska
1
ORCID: ORCID

  1. Institute of Water and Wastewater Engineering, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper projects the potential of agricultural waste Saraca indica leaf powder (SILP) in biosorbing chromium from aqueous system. The influence of pH, contact time, metal concentration, biomass dosage and particle size on the selectivity of the removal process was investigated. The maximum sorption efficiency of SILP for Cr(lll): 85.23% and Cr(VI): 89.67%was found to be pH dependent giving optimum sorption at pH 6.5 and 2.5 respectively. The adsorption process fitted well to both Freundlich and Langmuir isotherms. Morphological changes observed in Scanning Electron Micrographs ofmetal treated biomass confirm the existence of biosorption phenomenon. Fourier Transform Infra-red Spectrometry confirms that amino acid-Cr interactions contribute a significant role in the biosorption of chromium using target leafpowder. The successful applications of easily abundant agricultural waste SILP, as a biosorbent have potential for a low technological pretreatment step, prior to economically not viable high-tech chemical treatments for the removal of Cr from water bodies.
Go to article

Authors and Affiliations

Pritee Goyal
Parul Sharma
Shalini Srivastava
M.M. Srivastava
Download PDF Download RIS Download Bibtex

Abstract

Porcine contagious pleuropneumonia (PCP) is a very serious respiratory disease which is difficult to prevent and treat. In this study, the therapeutic effects of lithium chloride (LiCl) on PCP were examined using a mouse model. A mouse model of PCP was established by intranasal infections with Actinobacillus pleuropneumoniae (App). Histopathological analysis was performed by routine paraffin sections and an H-E staining method. The inflammatory factors, TLR4 and CCL2 were analyzed by qPCR. The expression levels of p-p65 and pGSK-3ß were detected using the Western Blot Method. The death rates, clinical symptoms, lung injuries, and levels of TLR-4, IL-1ß, IL-6, TNF-α, and CCL2 were observed to decrease in the App-infected mice treated with LiCl. It was determined that the LiCl treatments had significantly reduced the mortality of the App-infected cells, as well as the expressions of p-p65 and pGSK-3ß. The results of this study indicated that LiCl could improve the pulmonary injuries of mice caused by App via the inhibition of the GSK-3β-NF-κB-dependent pathways, and may potentially become an effective drug for improving pulmonary injuries caused by PCP.
Go to article

Bibliography


Benga L, Hoeltig D, Rehm T, Rothkoetter HJ, Pabst R, Valentin- -Weigand P; FUGATO-consortium IRAS (2009) Expression levels of immune markers in Actinobacillus pleuropneumoniae infected pigs and their relation to breed and clinical symptoms. BMC Vet Res 5: 13.
Boren J, Shryock G, Fergis A, Jeffers A, Owens S, Qin W, Koenig KB, Tsukasaki Y, Komatsu S, Ikebe M, Idell S, Tucker TA (2017) Inhibition of glycogen synthase kinase 3β blocks mesomesenchymal transition and attenuates streptococcus pneumonia-mediated pleural injury in mice. Am J Pathol 187: 2461-2472.
Brogaard L, Klitgaard K, Heegaard PM, Hansen MS, Jensen TK, Skovgaard K (2015) Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae. BMC Genomics 16: 417.
Chang Y, Chen C, Lin C, Lu S, Cheng M, Kuo C, Lin Y (2013) Regulatory role of GSK-3β on NF-κB, nitric oxide, and TNF-α in Group A Streptococcal infection. Mediators Inflamm 2013: 720689.
Chen K, Wu Y, Zhu M, Deng Q, Nie X, Li M, Wu M, Huang X (2013) Lithium chloride promotes host resistance against Pseudomonas aeruginosa keratitis. Mol Vis 19: 1502-1514.
Dugo L, Collin M, Allen DA, Patel NS, Bauer I, Mervaala EM, Louhelainen M, Foster SJ, Yaqoob MM, Thiemermann C (2005) GSK-3beta inhibitors attenuate the organ injury/ /dysfunction caused by endotoxemia in the rat. Crit Care Med 33: 1903-1912.
Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406: 86-90.
Hoffmeister L, Diekmann M, Brand K, Huber R (2020) GSK3: a kinase balancing promotion and resolution Jope RS, Cheng Y, Lowell JA, Worthen RJ, Sitbon YH, Beurel E (2017) Stressed and inflamed, can GSK3 be blamed? Trends Biochem Sci 42: 180-192.
Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32: 577-595.
Hu P, Huang F, Niu J, Tang Z (2015) TLR-4 involvement in pyroptosis of mice with pulmonary inflammation infected by Actinobacillus pleuropneumoniae. Wei Sheng Wu Xue Bao 55: 650-656.
Kumar V (2018) Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol 59: 391-412.
Kumar V (2020) Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 89: 107087.
Li B, Fang J, Zuo Z, Yin S, He T, Yang M, Deng J, Shen L, Ma X, Yu S, Wang Y, Ren Z (2018) Activation of porcine alveolar macrophages by Actinobacillus pleuropneumoniae lipopolysaccharide via the toll-like receptor 4/NF-kappaB-mediated pathway. Infect Immun 86: e00642-17.
Li H, Gao D, Li Y, Wang Y, Liu H, Zhao J (2018) Antiviral effect of lithium chloride on porcine epidemic diarrhea virus in Vitro. Res Vet Sci 118: 288-294.
Li N, Zhang X, Dong H, Zhang S, Sun J, Qian Y (2016) Lithium ameliorates LPS-induced astrocytes activation partly via inhibition of toll-Like receptor 4 expression. Cell Physiol Biochem 38: 714-725.
Liu X, Klein PS (2018) Glycogen synthase kinase-3 and alternative splicing. Wiley Interdiscip Rev RNA 9: e1501.
Makola RT, Mbazima VG, Mokgotho MP, Gallicchio VS, Matsebatlela TM (2020) The effect of lithium on inflammation-associated genes in lipopolysaccharide-activated Raw 264.7 macrophages. Int J Inflam 2020: 8340195.
Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 6: 777-784.
Medunjanin S, Schleithoff L, Fiegehenn C, Weinert S, Zuschratter W, Braun-Dullaeus RC (2016) GSK-3β controls NF-kappaB activity via IKKγ/NEMO. Sci Rep 6: 38553.
Oviedo-Boyso J, Cortés-Vieyra R, Huante-Mendoza A, Yu HB, Valdez-Alarcón JJ, Bravo-Patiño A, Cajero- -Juárez M, Finlay BB, Baizabal-Aguirre VM (2011) The phosphoinositide-3-kinase-Akt signalling pathway is important for Staphylococcus aureus internalization by endothelial cells. Infect Immun 79: 4569-4577.
Paramel GV, Sirsjö A, Fransén K (2015) Role of genetic alterations in the NLRP3 and CARD8 genes in health and disease. Mediators Inflamm 2015: 846782.
Pereira MF, Rossi CC, Seide LE, Martins Filho S, Dolinski CM, Bazzolli DM (2018) Antimicrobial resistance, biofilm formation and virulence reveal Actinobacillus pleuropneumoniae strains’ pathogenicity complexity. Res Vet Sci 118: 498-501.
Raghavendra PB, Lee E, Parameswaran N (2014) Regulation of macrophage biology by lithium: a new look at an old drug. J Neuroimmune Pharmacol 9: 277-284.
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49: 1603-1616.
Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I (2018) Update on Actinobacillus pleuropneumoniae- knowledge, gaps and challenges. Transbound Emerg Dis 65 (Suppl 1): 72-90.
Snitow ME, Bhansali RS, Klein PS (2021) Lithium and therapeutic targeting of GSK-3. Cells 10: 255.
Song J, Bishop BL, Li G, Duncan MJ, Abraham SN (2007) TLR4 initiated and cAMP-mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 1: 287-298. Woodgett JR, Ohashi PS (2005) GSK3: an in-Toll-erant protein kinase? Nat Immunol 6: 751-752.
Zhang P, Katz J, Michalek SM (2009) Glycogen synthase kinase-3beta (GSK3beta) inhibition suppresses the inflammatory response to Francisella infection and protects against tularemia in mice. Mol Immunol 46: 677-687.
Zhao Y, Yan K, Wang Y, Cai J, Wei L, Li S, Xu W, Li M (2020) Lithium chloride confers protection against viral myocarditis via suppression of coxsackievirus B3 virus replication. Microb Pathog 144: 104169. of inflammation. Cells 9: 820.

Go to article

Authors and Affiliations

Y. Zhang
1
W. Xu
1
Y. Tang
1
F. Huang
1 2

  1. College of Veterinary Medicine, Hunan Agricultural University, Furong District, Nongda Road, No.1, Changsha 410128, China
  2. Hunan Engineering Technology Research Center for Veterinary Drugs, Hunan Agricultural University, Furong District, Nongda Road, No.1, Changsha 410128, China
Download PDF Download RIS Download Bibtex

Abstract

In this study, we examined whether and to what extent oxidative stress is induced in seedlings of two winter triticale (Triticosecale Wittm.) varieties (susceptible Tornado and resistant Witon) in response to infestation by the cereal grain aphid (Sitobion avenae L.) and bird-cherry-oat aphid (Rhopalosiphum padi L.). We compared the level of hydrogen peroxide (H2O2) and lipid peroxidation products as well as markers of protein damage (protein-bound thiol and carbonyl groups). The studied parameters were measured at 6, 24, 48 and 96 h post-initial aphid infestation compared to the non-infested control seedlings. Our studies indicated that the cereal aphid feeding evoked oxidative stress in the triticale seedlings. Cereal aphid feeding increased the H2O2 level in triticale tissues, with maximum levels observed at 24 and 48 h post-infestation. Triticale infestation with aphids also increased lipid peroxidation products in triticale seedlings, with the maximal levels at 48 or 96 h post-infestation. Further, there was a reduction in protein thiol content and an increase in protein carbonyl content in the triticale seedlings after infestation with female aphids. Stronger triticale macromolecule damages were evoked by the oligophagous aphid R. padi. There was a more substantial protein thiol content reduction in the resistant Witon cultivar and higher accumulation of protein-bound carbonyls in the tissues of the susceptible Tornado cultivar. The changes were proportional to the aphid population and the time of aphid attack. These findings indicate that the defensive strategies against cereal aphid (S. avenae and R. padi) infestation were stimulated in triticale Tornado and Witon seedlings. Our results explain some aspects and broaden the current knowledge of regulatory mechanisms in plant-aphid interactions.

Go to article

Authors and Affiliations

Iwona Łukasik
Sylwia Goławska
Download PDF Download RIS Download Bibtex

Abstract

The monograph analyzes health behaviors and main factors on the basis of which it is possible to transform a lifestyle generally focused on the well-being of an individual and society. According to WHO, health is a state of complete physical, mental and social well-being, and not only the absence of a disease. The definition clearly explains its multidimensional and multithreaded character dependent subjectively on every individual and on social and cultural conditions. Health in its general meaning becomes a sub-jective human feeling. Each individual plays an important role in the process of providing it. Good health condition can be achieved by proper nutrition, regular doctor’s check-up visits and active way of life. Health behaviors are still a key element of the daily activity of everyone. Despite the fact that full knowl-edge of the concept of “healthy lifestyle” prevails, still many people avoid categorical statements. In response to questions about lifestyle, a significant number of respondents often indicate an intention or willingness to change, or to partially comply with the requirements, which results from weakness and lack of determination in action. Knowledge supported by the offer of attractive models that promote the right patterns of behavior can have a positive impact on the global health of the society.
Go to article

Authors and Affiliations

Paulina Fałek
1
Tomasz Adamczyk
2
Artur Fałek
1
Franciszek Burdan
3 4

  1. Independent Public Healthcare, Puławy, Poland
  2. The Institute of Sociological Sciences, Faculty of Social Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
  3. Human Anatomy Department, Medical University of Lublin, Lublin, Poland
  4. Department of Radiology, St. John Cancer Center, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents preliminary data on the population structure of two Antarctic crustaceans Eudorella splendida and Nototanais antarcticus, commonly occurring in Admiralty Bay (South Shetland Islands). From analysis of the material studied it can be concluded that N. antarcticus is a progynous hermaphrodite with a life cycle lasting at least two years. The life cycle of E. splendida lasts probably 3-4 years. It is a semelparous species, but some females after brooding moult and revert into the intermediate stage.

Go to article

Authors and Affiliations

Magdalena Błażewicz-Paszkowycz
Download PDF Download RIS Download Bibtex

Abstract

The article examines the role of ‘Abd Allāh Ibn Muḥammad aṭ-Ṭā’ī in the development of modern literature and culture in Oman and Gulf Countries. His life was devoted to build bridges of understanding between people. He was not only poet and writer but also Author of critical studies on literary life in the Gulf Countries. ‘Abd Allāh aṭ-Ṭā’ī paved the way for the next generation of men of letters and became a symbol of the revival of the Gulf Literature. All works by ‘Abd Allāh aṭ-Ṭā’ī were collected and published in 2016 in Dār Faḍā’āt in Amman.
Go to article

Authors and Affiliations

Barbara Michalak-Pikulska
1
ORCID: ORCID

  1. Jagiellonian University, Cracow, Poland

This page uses 'cookies'. Learn more