Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of experimental studies on removal of NOx from flue gas via NO ozonation and wet scrubbing of products of NO oxidation in NaOH solutions. The experiment was conducted in a pilot plant installation supplied with flue gas from a coal-fired boiler at the flow rate 200 m3/h. The initial mole fraction of NOx,ref in flue gas was approx. 220 ppm, the molar ratio X = O3/NOref varied between 0 and 2.5. Ozone (O3 content 1÷5% in oxygen) was injected into the flue gas channel before the wet scrubber. The effect of the mole ratio X, the NaOH concentration in the absorbent, the liquid-to-gas ratio (L/G) and the initial NOx concentration on the efficiency of NOx removal was examined. Two domains of the molar ratio X were distinguished in which denitrification was governed by different mechanisms: for X ≤ 1.0 oxidation of NO to NO2 predominates with slow absorption of NO2, for X >> 1.0 NO2 undergoes further oxidation to higher oxides being efficiently absorbed in the scrubber. At the stoichiometric conditions (X = 1) the effectiveness of NO oxidation was better than 90%. However, the effectiveness of NOx removal reached only 25%. When ozonation was intensified (X ≥ 2.25) about 95% of NOx was removed from flue gas. The concentration of sodium hydroxide in the aqueous solution and the liquid-to-gas ratio in the absorber had little effect on the effectiveness of NOx removal for X > 2.

Go to article

Authors and Affiliations

Maciej P. Jakubiak
Włodzimierz K. Kordylewski
Download PDF Download RIS Download Bibtex

Abstract

Degradation of Supercapacitors (SC) is quantified by accelerated ageing tests. Energy cycling tests and calendar life tests are used since they address the real operating modes. The periodic characterization is used to analyse evolution of the SC parameters as a whole, and its Helmholtz and diffusion capacitances. These parameters are determined before the ageing tests and during 3 × 105 cycles of both 75% and 100% energy cycling, respectively. Precise evaluation of the capacitance and Equivalent Series Resistance (ESR) is based on fitting the experimental data by an exponential function of voltage vs. time. The ESR increases linearly with the number (No) of cycles for both 75% and 100% energy cycling, whereas a super-linear increase of ESR vs. time of cycling is observed for the 100% energy cycling. A decrease of capacitance in time had been evaluated for 2000 hours of ageing of SC. A relative change of capacitance is ΔC/C0 = 16% for the 75% energy cycling test and ΔC/C0 = 20% for the 100% energy cycling test at temperature 25°C, while ΔC/C0 = 6% for the calendar test at temperature 22°C for a voltage bias V = 1.0 Vop. The energy cycling causes a greater decrease of capacitance in comparison with the calendar test; such results may be a consequence of increasing the temperature due to the Joule heat created in the SC structure. The charge/discharge current value is the same for both 75% and 100% energy cycling tests, so it is the Joule heat created on both the equivalent series resistance and time-dependent diffuse resistance that should be the source of degradation of the SC structure. The diffuse resistance reaches a value of up to 30Ω within each 75% energy cycle and up to about 43Ω within each 100% energy cycle.

Go to article

Authors and Affiliations

Vlasta Sedlakova
Jiri Majzner
Josef Sikula
Petr Sedlak
Tomas Kuparowitz
Brandon Buergler
Petr Vasina

This page uses 'cookies'. Learn more