Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the presented work, the author describes a new diagnostic method of ballistic resistance of multi– layered shields. The proper ballistic energy absorbed by the shield is introduced in the form V2BL[R] according to Recht’s and Ipson’s method, and V2BL[Z] according to author’s method. The kinetic energy of the bullet mp · V2p/2 and the momentum of force I are transferred to the shield and the dynamometer of ballistic pendulum. They are used to determine the proper energy V2BL[Z] and ballistic thickness hBL of the shield. The procedure can be widened onto the absorption of the energy by individual layers of the shield, where: AHnan,bn – the effect of n – interlayer on proper energy absorbed by the shield. The effectiveness of the used methods is expressed by average effectiveness coefficient βs of proper energy absorbed by the shield V2BL as well as by average mass coefficients α2s . The ballistic shields can be composed of different grades of metal layers and interlayer areas with well-chosen ballistic proprieties.

The maximization of interlayer effectiveness Nn[R] and Nn[Z] as well as relative mass effectiveness Ms[R] and Ms[Z] leads to optimum conditions of selection of multi–layered shields structures.

Go to article

Authors and Affiliations

Zdzisław Zatorski
Download PDF Download RIS Download Bibtex

Abstract

Small-scale vertical-axis wind turbines can be used as a source of electricity in rural and urban environments. According to the authors’ knowledge, there are no validated simplified aerodynamic models of these wind turbines, therefore the use of more advanced techniques, such as for example the computational methods for fluid dynamics is justified. The paper contains performance analysis of the small-scale vertical-axis wind turbine with a large solidity. The averaged velocity field and the averaged static pressure distribution around the rotor have been also analyzed. All numerical results presented in this paper are obtained using the SST k-ω turbulence model. Computed power coefficients are in good agreement with the experimental results. A small change in the tip speed ratio significantly affects the velocity field. Obtained velocity fields can be further used as a base for simplified aerodynamic methods.

Go to article

Bibliography

[1] B.F. Blackwell. The vertical-axis wind turbine “How it works”. Energy Report, SLA-74-0160, Sandia Laboratories, 1974.
[2] K. Jankowski. Vertical axis turbine of Darrieus h-type with variable blade incidence angle concept design. M.Sc. Thesis, Warsaw University of Technology, Poland, 2009.
[3] I. Paraschivoiu. Wind Turbine Design: With Emphasis on Darrieus Concept. Polytechnic International Press, Canada, 2002.
[4] I. Paraschivoiu, O. Trifu, and Saeed F. H-Darrieus wind turbine with blade pitch control. International Journal of Rotating Machinery, 2009:ID 505343, 2009. doi: 10.1155/2009/505343.
[5] R. Bravo, S. Tullis, and S. Ziada. Performance testing of a small vertical-axis wind turbine. In Proceedings of the 21st Canadian Congress of Applied Mechanics CANCAM, Toronto, Canada, 7-9 June 2007.
[6] M.R. Islam, S. Mekhilef, and R. Saidur. Progress and recent trends of wind energy technology. Renewable and Sustainable Energy Reviews, 21:456–468, 2013. doi: 10.1016/j.rser.2013.01.007.
[7] F. Scheurich, T.M. Fletcher, and R.E. Brown. The influence of blade curvature and helical blade twist on the performance of a vertical-axis wind turbine. In 4 8th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, USA, 4-7 Jan. 2010. doi: 10.2514/6.2010-1579.
[8] H.A. Madsen, T.J. Larsen, U.S. Paulsen, and L. Vita. Implementation of the actuator cylinder flow model in the HAWC2 code for aeroelastic simulations on vertical axis wind turbines. In Proceedings of 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Dallas, USA, 7-10 Jan. 2013. doi: 10.2514/6.2013-913.
[9] W. Tjiu, T. Marnoto, S. Mat, M.H. Ruslan, and K. Sopian. Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multimegawatt Darrieus VAWT development. Renewable Energy, 75:560–571, March 2015. doi: 10.1016/j.renene.2014.10.039.
[10] M. Islam, D.S.K. Ting, and A. Fartaj. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews, 12(4):1087–1109, 2008. doi: 10.1016/j.rser.2006.10.023.
[11] M Abdul Akbar and V Mustafa. A new approach for optimization of vertical axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 153:34–45, 2016. doi: 10.1016/j.jweia.2016.03.006.
[12] J.H. Strickland, T. Smith, and K. Sun. A vortex model of the Darrieus turbine: An analytical and experimental study. Report SAND81-7017, Sandia National Laboratories, 1981.
[13] C.S. Ferreira, H.A. Madsen, M. Barone, B. Roscher, P. Deglaire, and I. Arduin. Comparison of aerodynamic models for vertical axis wind turbines. Journal of Physics: Conference Series, 524(1):012125, 2014. doi: 10.1088/1742-6596/524/1/012125.
[14] P. Lichota and D.A. Noreña. A priori model inclusion in the multisine maneuver design. In 17th International Carpathian Control Conference (ICCC), pages 440–445, Tatranska Lomnica, Slovakia, 29 May – 1 June 2016. doi: 10.1109/CarpathianCC.2016.7501138.
[15] A. Allet, S. Hallé, and I. Paraschivoiu. Numerical simulation of dynamic stall around an airfoil in Darrieus motion. Journal of Solar Energy Engineering, 121:69–76, 1999. 10.1115/1.2888145.
[16] C.S. Ferreira, H. Bijl, G. van Bussel, and G. van Kuik. Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. Journal of Physics: Conference Series, 75:012023, 2007. doi: 10.1088/1742-6596/75/1/012023.
[17] E. Amet, T. Maître, C. Pellone, and J.L. Achard. 2D numerical simulations of blade-vortex interaction in a Darrieus turbine. Journal of Fluids Engineering, 131(11):111103, 2009. doi: 10.1115/1.4000258.
[18] W.Z. Shen, J.H. Zhang, and J.N. Sørensen. The actuator surface model: a new Navier-Stokes based model for rotor computations. Journal of Solar Energy Engineering, 131(1):011002, 2009. doi: 10.1115/1.3027502.
[19] F. Schuerich and R.E. Brown. Effect of dynamic stall on the aerodynamics of vertical-axis wind turbines. AIAA Journal, 49(11):2511–2521, 2011. doi: 10.2514/1.J051060.
[20] A. Laneville and P. Vittecoq. Dynamic stall: the case of the vertical axis wind turbine. Journal of Solar Energy Engineering, 108(2):140–145, 1986. doi: 10.1115/1.3268081.
[21] M.C. Claessens. The Design and Testing of Airfoils for Application in Small Vertical Axis Wind Turbines. M.Sc. Thesis, Delft University of Technology, The Netherlands, 2006.
[22] P. Marsh, D. Ranmuthugala, I. Penesis, and G. Thomas. Three dimensional numerical simulations of a straight-bladed vertical axis tidal turbine. In 1 8th Australasian Fluid Mechanics Conference, Launceston, Australia, 3-7 December 2012.
[23] K. Rogowski. Analysis of Performance of the Darrieus Wind Turbines. Ph.D. Thesis, Warsaw University of Technology, Poland, 2014.
[24] K. Rogowski and R. Maronski. CFD computation of the Savonius rotor. Journal of Theoretical and Applied Mechanics, 53(1):37–45, 2015. doi: 10.15632/jtam-pl.53.1.37
[25] F.R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994. doi: 10.2514/3.12149.
[26] O. Guerri, A. Sakout, and K. Bouhadef. Simulations of the fluid flow around a rotating vertical axis wind turbine. Wind Engineering, 31(3):149–163, 2007. doi: 10.1260/030952407781998819.
[27] F. Scheurich, T.M. Fletcher, and R.E. Brown. Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine. Wind Energy, 14(2):159–177, 2011. doi: 10.1002/we.409.
Go to article

Authors and Affiliations

Krzysztof Rogowski
1
Ryszard Maroński
1
Janusz Piechna
1

  1. Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland.
Download PDF Download RIS Download Bibtex

Abstract

The purposes of this paper are threefold. The first and the most general purpose is to provide an update of Ingham’s analysis of the southern lexical features that is based on data gathered more than forty years ago (Ingham 1973). On this basis, I will reconsider the lexical link postulated by Ingham (2009: 101, 2007: 577) between the southern gilit-dialects continuum, on the one hand, and the dialects of the Gulf Coast, on the other hand. The second purpose is to reconsider the hitherto maintained lexical frontiers of the southern continuum suggested by Ingham (1994), discussing a range of items that so far have always been treated as ‘southern’, though they are widely spread in other gilit- and, to a less extent, in qeltu-dialects in the western and northern parts of Iraq. The third purpose involves proposing the dichotomy Šrūgi/non-Šrūgi as a new and efficient way of classification of the gilit-dialects. At the end of this paper, a list of Šrūgi lexical features is given.

Go to article

Authors and Affiliations

Qasim Hassan

This page uses 'cookies'. Learn more