Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Looking for alternative sources of energy to generate electricity has been a hot topic for society for a very long time. The need to replace current energy resources such as fuel, oil, and gas is increasing, and the replacement comes from energy obtained from the wind, sun, and sea waves. In many cases, valuable raw materials can be obtained in addition to energy production, while having a significant environmental effect simultaneously.
The shortage of energy and raw material resources in many countries stimulates the growth of interest in all potential sources of energy – solar, wind, wave, tidal – has lead to accelerating the demand for oil and gas, shale gas, as well as the expansion of the areas for the cultivation of technical crops for biofuels. Classical energy resources like oil, gas and coal are serious polluters of the natural environment. Especially harmful is the release of carbon dioxide and sulfur oxides during the exploitation of these resources.
A significant energy raw material potential of non-traditional resources lies in the waters and bottom of the Black Sea, which is a natural geobiotechnological reactor, capable of producing a variety of energy raw resources.
This paper discusses the use of hydrogen sulfide available in the Black Sea waters to produce energy and useful industrial products and proposes the respective. The technology also has an ecological effect in terms of the purification of the hydrogen sulfide pool. The paper also discusses some technologies for the separation of hydrogen sulfide to hydrogen and sulfur. An estimation of the heat value of hydrogen sulfide in the water of the Black Sea is also presented.
Go to article

Authors and Affiliations

Iskra Simova
1
Rositsa Velichkova
1
Milka Uzunova
2
Radostina Angelova
1
Peter Stankov
1
Koycho Atanasov
3

  1. Hydroaerodynamic and Hydraulic Machines, Technical University of Sofia, Bulgaria
  2. ECAM-EPMI, France
  3. Technical University of Sofia, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

For the purpose of reducing the impact noise transmission across floating floors in residential buildings, two main sound transmission paths in the floating floor structure are considered: the stud path and the cavity path. The sound transmission of each path is analysed separately: the sound transmission through the cavity and the stud are predicted by statistical energy analysis (SEA). Then, the sound insulation prediction model of the floating floor is established. There is reasonable agreement between the theoretical prediction and measurement, and the results show that a resilient layer with low stiffness can attenuate the sound bridge effect, resulting in higher impact noise insulation. Then, the influences of the floor covering, the resilient layer and the floor plate on the impact sound insulation are investigated to achieve the optimised structure of the floating floor based on the sound insulation.
Go to article

Authors and Affiliations

Xianfeng Huang
1 2
Yimin Lu
3
Chen Qu
1
Chenhui Zhu
1

  1. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
  2. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
  3. School of Electrical Engineering, Guangxi University, Nanning 530004, China
Download PDF Download RIS Download Bibtex

Abstract

The development of cities and peri-urban areas is exerting an increasingly strong impact on the natural environment and, at the same time, on the living conditions and health of people. Problems and challenges that need to be addressed include increasing air pollution in these areas, formation of a surface urban heat island (SUHI), water management disruptions (water scarcity or excess), and the destruction of natural habitats. One of the solutions that contributes to climate change mitigation is the introduction of blue-green infrastructure into the city space and urbanised areas. The research objective was to identify spatial features (geodata) that determine the optimum location of selected blue-green infrastructure (BGI) components, acquire them, and then use the Geographical Information System (GIS) to determine their optimum locations. As the first step, cartographic models were developed which indicated areas that enable the development of selected blue-green infrastructure components in the Olsztyn city area, Warmińsko-Mazurskie Province, Poland. The models were juxtaposed with other two models developed by the authors, i.e. a surface urban heat island model and a demographic model that showed the age structure of the city’s population. Consequently, maps with potential locations for the blue-green infrastructure were developed, while taking into account reference data from the National Land Surveying and Cartographic Resource and Landsat 8 images.
Go to article

Authors and Affiliations

Szymon Czyża
1
ORCID: ORCID
Anna M. Kowalczyk
2
ORCID: ORCID

  1. University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Institute of Geodesy and Civil Engineering, Department of Geoinformation and Cartography, Olsztyn, Poland
  2. University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Institute of Geodesy and Civil Engineering, Department of Geodesy, St. Heweliusza 12, Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The temperature dependence of photoluminescence spectra has been studied for the HgCdTe epilayer. At low temperatures, the signal has plenty of band-tail states and shallow/deep defects which makes it difficult to evaluate the material bandgap. In most of the published reports, the photoluminescence spectrum containing multiple peaks is analyzed using a Gaussian fit to a particular peak. However, the determination of the peak position deviates from the energy gap value. Consequently, it may seem that a blue shift with increasing temperature becomes apparent. In our approach, the main peak was fitted with the expression proportional to the product of the joint density of states and the Boltzmann distribution function. The energy gap determined on this basis coincides in the entire temperature range with the theoretical Hansen dependence for the assumed Cd molar composition of the active layer. In addition, the result coincides well with the bandgap energy determined on the basis of the cut-off wavelength at which the detector response drops to 50% of the peak value.
Go to article

Authors and Affiliations

Krzysztof Murawski
1
ORCID: ORCID
Małgorzata Kopytko
1
ORCID: ORCID
Paweł Madejczyk
1
ORCID: ORCID
Kinga Majkowycz
1
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Military University of Technology, Institute of Applied Physics, 2 Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

An account of the conference organised by the Ancient History Committee of the Polish Historical Society in Poznań on 20–22 September 2017.

Go to article

Authors and Affiliations

Katarzyna Balbuza

This page uses 'cookies'. Learn more