Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Operating cranes is challenging because payloads can experience large and dangerous oscillations. Anti-sway control of crane payload can be approached by the active methods, such as feedback control, or passive methods. The feedback control uses the feedback measurement of swing vibration to produce the command sent to a motor. The feedback control shows good effectiveness, but conflict with the actions of the human operator is a challenge of this method. The passive method uses the spring-damper to dissipate energy. The passive method does not cause conflict with the human operator but has limited performance. This paper presents the combination of two methods to overcome the disadvantages of each separate one. The passive method is used to improve the efficiency of the feedback method to avoid conflicts with the human operator. The effectiveness of the combination is simulated in a 2D crane model.
Go to article

Bibliography


[1] D. Kim and Y. Park. Tracking control in x-y plane of an offshore container crane. Journal of Vibration and Control, 23(3):469-483, 2017. doi: 10.1177/1077546315581091.
[2] D.H. Kim and J.W. Lee. Model-based PID control of a crane spreader by four auxiliary cables. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220(8):1151-1165, 2006. doi: 10.1243/09544062JMES120.
[3] N. Uchiyama. Robust control of rotary crane by partial-state feedback with integrator. Mechatronics, 19(8):1294-1302, 2009. doi: 10.1016/j.mechatronics.2009.08.007.
[4] J. Smoczek. Fuzzy crane control with sensorless payload deflection feedback for vibration reduction. Mechanical Systems and Signal Processing, 46(1):70–81, 2014. doi: 10.1016/j.ymssp.2013.12.012.
[5] M. Zhang, X. Ma, X. Rong, X. Tian, and Y. Li. Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and external disturbances. Mechanical Systems and Signal Processing, 76-77:15–32, 2016. doi: 10.1016/j.ymssp.2016.02.013.
[6] L.D. Viet and K.T. Nguyen. Combination of input shaping and radial spring-damper to reduce tridirectional vibration of crane payload. Mechanical Systems and Signal Processing, 116:310-321, 2019. doi: 0.1016/j.ymssp.2018.06.056.
[7] L.D. Viet and Y. Park. A cable-passive damper system for sway and skew motion control of a crane spreader. Shock and Vibration, 2015:507549, 2015. doi: 10.1155/2015/507549.
[8] L.D. Viet. Crane sway reduction using Coriolis force produced by radial spring and damper. Journal of Mechanical Science and Technology, 29(3):973-979, 2015. doi: 10.1007/s12206-015-0211-1.
[9] J. Vaughan, E. Maleki, and W. Singhose. Advantages of using command shaping over feedback for crane control. Proceedings of the 2010 American Control Conference, pages 2308-2313, 2010. doi: 10.1109/ACC.2010.5530548.
[10] J. Vaughan, A. Yano, and W. Singhose. Comparison of robust input shapers. Journal of Sound and Vibration, 315(4-5):797–815, 2008. doi: 10.1016/j.jsv.2008.02.032.
[11] W. Singhose. Command shaping for flexible systems: A review of the first 50 years. International Journal of Precision Engineering and Manufacturing, 10(4):153-168, 2009. doi: 10.1007/s12541-009-0084-2.
[12] J. Lawrence and W. Singhose. Command shaping slewing motions for tower cranes. Journal of Vibration and Acoustics, 132(1):011002, 2010. doi: 10.1115/1.3025845.
[13] D. Blackburn, W. Singhose, J. Kitchen, V. Patrangenaru, J. Lawrence, K. Tatsuaki, and A. Taura. Command shaping for nonlinear crane dynamics. Journal of Vibration and Control, 16(4):477-501, 2010. doi: 10.1177/1077546309106142.
[14] J. Huang, E. Maleki, and W. Singhose. Dynamics and swing control of mobile boom cranes subject to wind disturbances, IET Control Theory and Applications, 7(9):1187–1195, 2013. doi: 10.1049/iet-cta.2012.0957.
[15] R. Schmidt, N. Barry, and J. Vaughan. Tracking of a target payload via a combination of input shaping and feedback control. IFAC-PapersOnLine, 48(12):141-146, 2015. doi: 10.1016/j.ifacol.2015.09.367.
[16] N.D. Anh, H. Matsuhisa, L.D. Viet, and M. Yasuda. Vibration control of an inverted pendulum type structure by passive mass-spring-pendulum dynamic vibration absorber. Journal of Sound and Vibration, 307(1-2):187-201, 2007. doi: 10.1016/j.jsv.2007.06.060.
[17] Function Bay Inc., http://www.functionbay.co.kr/, last checked 27 May 2020.
Go to article

Authors and Affiliations

Trong Kien Nguyen
1

  1. Faculty of Civil Engineering, Vinh University, Vinh City, Nghe An, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The study overviews selected issues regarding interconnection between law of the sea, maritime law and space law. The analysis concerns general principles on application of space technologies to remote sensing of the sea as set forth in the Convention on the Transfer and Use o f Data of Remote Sensing of the Earth from Outer Space (1978) and the Annex to the United Nations Resolution 41/65 on Principles Relating to Remote Sensing of the Earth (1986). The article also surveys Convention on the International Maritime Satellite Organization (INMARSAT 1976) together with Operating Agreement and covers some aspects o f International Maritime Organization’s use of space technology in application of International Convention for the Safety of Life at Sea (SOLAS 1960, 1974, 1980), International Regulations for Preventing Collisions at Sea (COLREGS 1972) and International Ship and Port Facility Security Code (ISPS 2002). The author describes how sea monitoring and exploration through satellite technology affects maritime legislation and discusses its impact on application of conventions for maritime environment protection, resource management, transportation and safety.

Go to article

Authors and Affiliations

Leonard Łukaszuk

This page uses 'cookies'. Learn more