Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Dual-phase steels have received extensive attention in autobody frame manufacturing due to the resulting characteristics of an interesting combination of ductile ferrite and hard martensite. Moreover, the ductile ferrite and hard martensite lead to heterogeneous deformation in the boundary between the two phases. Then, geometrically necessary dislocations (GNDs) are created to accommodate a lattice mismatch due to the deformation incompatibility of the boundary in straining. In this study, a new empirical GND model is developed, in which the GND density is a function of local plastic deformation; the GND density is distributed in the phase boundary in accordance with an ā€œSā€ model of material plastic strain. The boundary conditions are applied to define the parameters. The proposed model is verified with DP600 steel. The effects of the GNDs and the width between ferrite and martensite on the strain hardening of DP600 steel are evaluated.
Go to article

Authors and Affiliations

Gou Rui-Bin
1
Dan Wen-Jiao
1
Xu Yong-Sheng
2
Yu Min
3
Li Tong-Jie
1

  1. Anhui Science and Technology University, College of Mechanical Engineering, Fengyang 233100, Anhui, China
  2. Shanghai Jiao Tong University, Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai 200240, China
  3. Anhui Science and Technology University, College of Architecture, Bengbu 233000, Anhui, China
Download PDF Download RIS Download Bibtex

Abstract

Ladle plays an important role in the metallurgical industry whose maintenance directly affects the production efficiency of enterprises. In view of the problems such as low maintenance efficiency and untimely maintenance in the current ladle passive maintenance scheme, the life prediction mechanism for ladle composite structures is established which bases on the stress analysis of steel shell and ladle lining in the production process, combining conventional fatigue analysis and extended fracture theory. The mechanism is accurate and effective according to the simulation results. Through which, the useful life of steel shell can be accurately predicted by detecting the crack length of it. Due to the large number of factors affecting the life of the lining of the ladle, it is difficult to accurately predict the life of the ladle lining, so a forecasting mean based on the thermal shock method is proposed to predict the service life of the ladle lining in this paper. The life prediction mechanism can provide data support and theoretical guidance for the active maintenance of the ladle, which is the prerequisite for scientifically formulating ladle initiative maintenance program.

Go to article

Authors and Affiliations

Gongfa Li
Du Jiang
Ying Sun
Guozhang Jiang
Bo Tao

This page uses 'cookies'. Learn more