Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Wheat grain discoloration, a worldwide disease that lowers grain quality and decreases grain yield, does not have a single etiology. It has been proposed that it is a consequence of an abiotic mechanism, a response to environmental conditions or enzymatic activity. It has also been suggest that it is a biotic mechanism, a fungal infection principally by Alternaria spp. and Bipolaris sorokiniana. The present work was carried out to analyze the possible etiology of this disease in nine durum wheat genotypes from two localities of southern Buenos Aires province (Argentina) on two sowing dates. Incidence (percentage of grain discoloration) was recorded and mycobiota associated with this pathology was registered following ISTA rules. Peroxidase activity in an extract obtained from grains belonging to genotypes of the locality that showed the highest incidence was measured.

The incidence among genotypes, localities and sowing dates varied, although the genotypes with the higher and lower values of incidence were the same for all the variables tested. The fungus Alternaria spp. was isolated the most frequently followed by Fusarium spp., while Bipolaris sorokiniana was found the least frequently. Peroxidase activity showed that all the treatments had similar levels of enzymatic activity, but there was no clear differentiation between controls either between genotypes with the lowest or the highest incidence values. This suggests that peroxidase activity did not have a clear relationship with grain discoloration. In this research, it is presumed that fungal infection is the main cause of this disease.

Go to article

Authors and Affiliations

Maria Josefina Cipollone
Paulina Moya
Iván Martínez
Mario Saparrat
Marina Sisterna
Download PDF Download RIS Download Bibtex

Abstract

As polycarbonate is frequently used in many products, its accumulation in landfi lls is absolutely harmful to the environment. The aims of this study were the screening and isolation of polycarbonate-degrading bacteria (PDB) and the assessment of their ability in the degradation of polycarbonate (PC) polymers. Nine-month buried-PC films were used for PDB isolation and identification. The biodegradation ability of the isolates was determined by growth curve, clear zone formation, lipase and amylase production, AFM and FTIR. Bacillus cereus and Bacillus megaterium were identifi ed and considered as PDB. The degradation ability of B. megaterium was significantly higher than that of B. cereus. Both were lipase and amylase positive. AFM and FTIR results showed the initiation of bacterial attachment. The PC biodegradation ability of isolates can be very efficient. Finding such efficient isolates (which was less studied before) will promise a decrease in plastic contamination in the future.
Go to article

Authors and Affiliations

Mojgan Arefian
1
Arezoo Tahmourespour
2
Mohammadali Zia
2

  1. Fars Science and Research Branch, Islamic Azad University, Fars, Iran
  2. Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
Download PDF Download RIS Download Bibtex

Abstract

When taking water from pre-mountain rivers, for transferring of large amounts of river sediments, rich in mineral fertilizers, along with water to crop fields through irrigation networks requires high sediment transport capacity and deformation resistance from irrigation networks. The projecting and construction of irrigation canals with these features in the foothills requires concreting the canal. The high content of river sediments in the Sokh River (5 kg∙m –3) and the low efficiency of the Right Bank Irrigation Reservoir (10–15%) require high hydraulic efficiency of water intake canals from this system. The main challenge is to reduce costs in concreted canals and ultimately ensure technical superiority. In the research were used generally accepted research methods in hydraulics, in particular field research and consequently, mathematical analysis. Kokandsay, Kartan and Bachkir irrigation canals were accepted as the object of research, the canals were designed on the basis of the best hydraulic section, the canal side slope was taken as a variable parameter and the technical and economic efficiency was checked using computer software. As a result, it was found that the consumption of concrete raw material for 1 running meter can save 0.2–0.3 m 3, depending on the adoption of the canal side slope, the acceptance of the slope of the canal wall at values 1–1.5 will increase up to sedimentation 10%.
Go to article

Authors and Affiliations

Alisher Fatxulloyev
1
ORCID: ORCID
Qudratjon Rakhimov
1
ORCID: ORCID
Davronjon Allayorov
1
ORCID: ORCID
Luqmon Samiev
1
ORCID: ORCID
Makhsud Otakhonov
1
ORCID: ORCID

  1. “Tashkent Institute of Irrigation and Agricultural Mechanization Engineers” National Research University, Faculty of Hydromelioration, st. Kori Niyazov 39, Tashkent, Uzbekistan
Download PDF Download RIS Download Bibtex

Abstract

The article aims to characterize Hadfield steel by analyzing its chemical composition, mechanical properties, and microstructure. The study focused on the twinning-induced work hardening of the alloy, which led to an increase in its hardness. The experimental data show that the material hardness at the surface improved considerably after solution heat treatment and work hardening, reaching more than 750 HV. By contrast, the hardness of the material core in the supersaturated condition was about 225 HV. The chemical and phase compositions of the material at the surface were compared with those of the core. The microstructural analysis of the steel revealed characteristic decarburization of the surface layer after solution heat treatment. The article also describes the effects of heat treatment on the properties and microstructure of Hadfield steel. The volumetric (qualitative) analysis of the computed tomography (CT) data of Hadfield steel subjected to heavy dynamic loading helped detect internal flaws, assess the material quality, and potentially prevent the structural failure or damage of the element tested.
Go to article

Bibliography

[1] Kalandyk, B., Tęcza, G., Zapała, R., Sobula, S. (2015). Cast high-manganese steel – the effect of microstructure on abrasive wear behaviour in miller test. Archives of Foundry Engineering. 15(2), 35-38. DOI: 10.1515/afe-2015-0033.
[2] Bartlett, L.N. & Avila, B.R. (2016). Grain refinement in lightweight advanced high-strength steel castings. International Journal of Metalcasting. 10, 401-420, DOI: 10.1007/s40962-016-0048-0.
[3] Guzman Fernandes, P.E. & Arruda, Santos, L. (2020). Effect of titanium and nitrogen inoculation on the microstructure, mechanical properties and abrasive wear resistance of Hadfield Steels. REM - International Engineering Journal. 73(5), 77-83. https://doi.org/10.1590/ 0370-44672019730023
[4] Chen, C., Lv, B., Feng, X., Zhang, F. & Beladi, H. (2018). Strain hardening and nanocrystallization behaviors in Hadfield steel subjected to surface severe plastic deformation. Materials Science and Engineering: A. 729, 178-184. DOI:10.1016/j.msea.2018.05.059.
[5] Chen, C., Zhang, F.C., Wang, F., Liu, H. & Yu, B.D. (2017). Efect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel. Materials Science & Engineering. 679, 95-103. DOI:10.1016/j.msea.2016.09.106.
[6] Bolanowski, K. (2008). Wear of working elements made of Hadfield cast steel under industrial conditions. Problemy Eksploatacji. 2, 25-32.
[7] Tęcza, G., Sobula, S. (2014). Effect of heat treatment on change microstructure of cast high-manganese Hadfield steel with elevated chromium content. Archives of Foundry Engineering. 14(3), 67-70.
[8] Gürol, U., Karadeniz, E., Çoban, O., & Kurnaz, S.C. (2021). Casting properties of ASTM A128 Gr. E1 steel modified with Mn-alloying and titanium ladle treatment. China Foundry. 18, 199-206. https://doi.org/10.1007/s41230-021-1002-1
[9] Pribulová, A., Babic, J. & Baricová, D. (2011). Influence of Hadfield´s steel chemical composition on its mechanical properties. Chem. Listy. 105, 430-432.
[10] Przybyłowicz, K. (2008). Iron alloys engineering. Kielce: Wyd. Politechniki Świętokrzyskiej w Kielcach (in Polish).
[11] Stradomski, Z. (2001). On the explosive hardening of cast Hadfield steel. Proceedings of a Conference on Advanced Steel Casting Technologies. Kraków. 112-122. (in Polish).
[12] Cullity, B.D. (1964). Basics of X-ray diffraction. Warszawa: PWN. (in Polish).
[13] Bolanowski, K. (2013). The influence of the hardness of the surface layer on the abrasion resistance of Hadfield cast steel. Problemy Eksploatacji. 1, 127-139. (in Polish).
[14] Przybyłowicz, K. (2012). Metal Science. Warszawa: WNT. (in Polish).
[15] El Fawjhry, M.K. (2018). Feasibility of new ladle-treated Hadfield steel for mining purposes. International Journal of Minerals, Metallurgy and Materials. 25(3), 300, https://doi.org/10.1007/s12613-018-1573-z.
[16] Subramanyan, D.K, Swansieger, A.E. and Avery, H.S. (1990). Austenitic manganese steels. In ASM Metals Handbook. Vol. 1, 10th Ed. (p. 822-840). India: American Society of Metals, India.
[17] Zykova, A., Popova, N., Kalashnikov, M. & Kurzina, I. (2017). Fine structure and phase composition of Fe–14Mn–1.2C steel: influence of a modified mixture based on refractory metals. International Journal of Minerals, Metallurgy and Materials. 24(5), 523-529. DOI: 10.1007/s12613-017-1433-2.
[18] Vdovin, K.N., Feoktistov, N.A., Gorlenko, D.A. et al. (2019). Modification of High-Manganese Steel Castings with Titanium Carbonitride. Steel in Translation. 3, 147-151. https://doi.org/10.3103/S0967091219030136.
[19] Issagulov, A.Z., Akhmetov, A.B., Naboko, Ye.P., Kusainova, G.D. & Kuszhanova, A.A. (2016). The research of modification process of steel Hadfield integrated alloy ferroalumisilicocalcium (Fe-Al-Si-Сa/FASC). Metalurgija. 55(3), 333-336.
[20] Haakonsen, F., Solberg, J.K., Klevan, O. & Van der Eijk, C. (2011). Grain refinement of austenitic manganese steels. In AISTech - Iron and Steel Technology Conference Proceedings, 5-6 May 2011 (pp. 763-771). Indianapolis, USA.
[21] El Fawkhry, M.K. (2021). Modified hadfield steel for castings of high and low gouging applications. International Journal of Metalcasting. 15(2), 613-624. https://doi.org/10.1007/s40962-020-00492-5.
[22] EI Fawkhry, M.K., Fathy, A.M. and Eissa, M.M. (2015). New energy saving technology for producing Hadfield steel to high gouging applications. Steel Research International. 86(3), 223-230. https://doi.org/10.1002/srin.201300388.
[23] El-Fawkhry, M.K., Fathy, A.M., Eissa, M. & El-Faramway, H. (2014). Eliminating heat treatment of Hadfield steel in stress abrasion wear applications. International Journal of Metalcasting. 8, 29-36. DOI: 10.1007/BF03355569
[24] Sobula, S., Kraiński, S. (2021). Effect of SiZr modification on the microstructure and properties of high manganese cast steel. Archives of Foundry Engineering. 4, 82-86. ISSN (1897-3310).
[25] Zambrano, O.A., Tressia, G., Souza, R.M. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 104621. DOI: doi.org/10.1016/j.engfailanal.2020.104621.
[26] Wróbel, T., Bartocha, D., Jezierski, J., Kalandyk, B., Sobula, S., Tęcza, G., Kostrzewa, K., Feliks E. High-manganese alloy cast steel in applications for cast elements of railway infrastructure. In Współpraca 2023 : XXIX international scientific conference of Polish, Czech and Slovak foundrymen, 26-28 April 2023. Niepołomice.
[27] Młyński, M., Sobula, S., Furgał, G. (2001). Economic aspects of the oxygen-recovery melts of Hadfield cast steel in the Foundry of Metalodlew S.A. Przegląd Odlewnictwa. 51(11), 382-384. (in Polish).
[28] Wróbel, T., Bartocha, D., Jezierski, J., Sobula, S., Kostrzewa K., Feliks E. (2023). High-manganese alloy cast steel used for cast elements of railway infrastructure. Stal, Metale & Nowe Technologie. 1-2, 30-34. (in Polish).
Go to article

Authors and Affiliations

Damian Bańkowski
1
ORCID: ORCID
Piotr S. Młynarczyk
1
ORCID: ORCID
Wojciech P. Depczyński
1
ORCID: ORCID
Kazimierz Bolanowski
1
ORCID: ORCID

  1. Kielce University of Technology, Poland

This page uses 'cookies'. Learn more