Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a study on the use of infrared thermography to assess the quality of liquid metal, a basic semi-finished product used in foundry production. EN AC-46000 alloy with the designation AlSi9Cu3(Fe) was used for the study. The crystallization process of the alloy was investigated using the TDA method with a Crystaldigraph device and Optris PI thermal imaging camera. The research describes how to use a thermal imaging camera to assess the quality of aluminium alloys. These alloys, due to their propensity in the liquid state to oxidise and absorb hydrogen, a refining procedure in the melting process. The effects of alloy refining are evaluated during technological tests of hydrogen solubility, density and casting shrinkage. The results presented in this paper showed that there is a statistical correlation between the density of the metal and the temperature values from the thermogram of the sample, obtained during its solidification. The existing correlation makes it possible to develop a thermographic inspection algorithm that allows a fast and non-contact assessment of aluminium alloy quality.
Go to article

Bibliography

[1] Dispinar, D., & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena. International Journal of Cast Metals Research, 17(5), 280-286. https://doi.org/10.1179/136404604225020696.
[2] Kowalczyk W., Dańko R., Górny M., Kawalec M. & Burbelko A. (2022) Influence of High-Pressure Die Casting Parameters on the Cooling Rate and the Structure of EN-AC 46000 Alloy. Materials, 15(16), 5702. https://doi.org/10.3390/ma15165702.
[3] Y B Zuo, B Jiang, Y J Zhang & Z Fan. (2013). Degassing LM25 aluminium alloy by novel degassing technology with intensive melt shearing. International Journal of Cast Metals Research. 26(1), 16-21. doi: 10.1179/1743133612Y.0000000019.
[4] Pietrowski, S. (2001). Al-Si Alloys. Lodz, Poland: Wydawnictwo Politechniki Łódzkiej. ISBN 83-7283-029-0
[5] Gumienny, G., Pisarek, B., Szymczak, T., Gawroński, J., Just, P., Władysiak, R., Rapiejko, C. & Pacyniak, T. (2022). Effect of degassing parameters on mechanical properties of EN AC-46000 gravity die casting. Materials. 15(23), 8323, 1-13. https://doi.org/10.3390/ma15238323.
[6] Pietrowski, S., Gumienny, G., Pisarek, B. & Władysiak, R. (2004). Production control of advanced casting alloys with TDA method. Archives of Mechanical Technology and Automation. 24(3), 131-143, ISSN (1233-9709).
[7] Rapiejko C., Pisarek B., Czekaj E. & Pacyniak T., (2014). Analysis of AM60 and AZ91 Alloy Crystallization in Ceramic Moulds by Thermal Derivative Analysis (TDA). Archives of Metallurgy and Materials. 59, doi: 10.2478/amm-2014-0246.
[8] Gumienny G., Kurowska B. & Just P. (2019). The effect of Manganese on the Crystallization Process, Microstructure and Selected Properties of Compacted Graphite Iron. Archives of Metallurgy and Materials. 64(4), 1269-1275. doi: 10.24425/amm.2019.130090.
[9] Pisarek B., Rapiejko C. & Pacyniak T. (2019). Effect of intensive Cooling of Alloy AC-AlSi7Mg with Alloy additions on Microstructure and Mechanical Properties. Archives of Metallurgy and Materials. 64 (2), 677-681. DOI: 10.2478/amm-2019.127598.
[10] Władysiak, R. & Kozuń, A. (2015). An Application for Infrared Camera in Analyzing of the Solidification Process of Al-Si Alloys. Archives of Foundry Engineering. 15(3), 81-84. DOI: 10.1515/afe-2015-0065.
[11] Holtzer, M., Bobrowski, A., Grabowska, B., Eichholz, S. & Hodor, K. (2010). Investigation of carriers of lustrous carbon at high temperatures by infrared spectroscopy (FTIR). Archives of Foundry Engineering. 10(4), 61-68.
[12] Sapieta, M., Dekys, V., Kao, M., Pastor, M., Sapietova, A. & Drvarova, B. (2023). Investigation of the mechanical properties of spur involute gearing by infrared thermography. Applied Sciences. 13(10), 5988. https://doi.org/10.3390/app13105988.
[13] Umar M. &·Paulraj S. (2021). Thermography analysis and porosity formation during laser beam welding of AA5083 H111 aluminum alloy. Journal of Thermal Analysis and Calorimetry 146, 1551–1559. https://doi.org/10.1007/s10973-020-10140-z.
[14] Lanc Z., Strbac B., Zeljkovic M., Zivkovic A. & Hadzistevic M. (2018). Emissivity of Aluminium Alloy Using Infrared Thermography Technique. Materials and Technology. 52(3). doi:10.17222/mit.2017.152.
[15] Badulescu C., Grediac M., Haddadi H., Mathias J.-D., Balandraud X. & Tran H.-S. (2011) Applying the Grid Method and Infrared Thermography to Investigate Plastic deformation in Aluminium Multicrystal. Mechanics of Materials, 43(1), 36-53. doi:10.1016/j.mechmat.2010.11.001.
Go to article

Authors and Affiliations

Ryszard Władysiak
1
ORCID: ORCID

  1. Lodz University of Technology, Department of Materials Engineering and Production Systems, Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper concerns measurements and calculations of low frequency noise for semiconductor layers with four-probe electrodes. The measurements setup for the voltage noise cross-correlation method is described. The gain calculations for local resistance noise are performed to evaluate the contribution to total noise from different areas of the layer. It was shown, through numerical calculations and noise measurements, that in four-point probe specimens, with separated current and voltage terminals, the non-resistance noise of the contact and the resistance noise of the layer can be identified. The four-point probe method is used to find the low frequency resistance noise of the GaSb layer with a different doping type. For n-type and p-type GaSb layers with low carrier concentrations, the measured noise is dominated by the non-resistance noise contributions from contacts. Low frequency resistance noise was identified in high-doped GaSb layers (both types). At room temperature, such resistance noise in an n-type GaSb layer is significantly larger than for p-type GaSb with comparable doping concentration.

Go to article

Authors and Affiliations

L. Ciura
A. Kolek
D. Smoczyński
A. Jasik

This page uses 'cookies'. Learn more