Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the discussion of water quality control, the first and most effective parameter that affects other variables and water quality parameters is the temperature situation and water temperature parameters that control many ecological and chemical processes in reservoirs. Additionally, one of the most important quality parameters studied in the quality of water resources of dams and reservoirs is the study of water quality in terms of salinity. The salinity of the reservoirs is primarily due to the rivers leading into them. The control of error in the reservoirs is always considered because the outlet water of the reservoirs, depending on the type of consumption, should always be standard in terms of salinity. Therefore, in this study, using the available statistics, the Ce-Qual-W2 two-dimensional model was used to simulate the heat and salinity layering of the Latyan Dam reservoir. The results showed that with warming and shifting from spring to late summer, the slope of temperature changes at depth increases and thermal layering intensifies, and a severe temperature difference occurs at depth. The results of sensitivity analysis also showed that by decreasing the wind shear coefficient (WSC), the reservoir water temperature increases, so that by increasing or decreasing the value of this coefficient by 0.4, the average water temperature by 0.56°C changes inversely, and the results also show that by increasing or decreasing the value of the shade coefficient by 0.85, the average water temperature changes by about 7.62°C, directly.
Go to article

Bibliography

AFSHAR A., KHOSRAVI M., MOLAJOU A. 2021. Assessing adaptability of cyclic and non-cyclic approach to conjunctive use of ground-water and surface water for sustainable management plans under climate change. Water Resources Management. Vol. 35 p. 3463– 3479. DOI 10.1007/s11269-021-02887-3.

AZADI F., ASHOFTEH P.S., LOÁICIGA H.A. 2019. Reservoir water-quality projections under climate-change conditions. Water Resources Management. No. 33(1) p. 401–421. DOI 10.1007/s11269-018-2109-z.

CAISSIE D. 2006. The thermal regime of rivers: a review. Freshwater Biology. Vol. 51(8) p. 1389–1406. DOI 10.1111/j.1365-2427.2006.01597.x.

CHENG Y., VOISIN N., YEARSLEY J.R., NIJSSEN B. 2020. Reservoirs modify river thermal regime sensitivity to climate change: a case study in the southeastern United States. Water Resources Research. Vol. 56(6), e2019WR025784. DOI 10.1029/2019WR025784.

DEBELE B., SRINIVASAN R., PARLANGE J.Y. 2008. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling & Assessment. Vol. 13(1) p. 135–153. DOI 10.1007/s10666-006-9075-1.

DELIMAN P.N., GERALD J.A. 2002. Application of the two-dimensional hydrothermal and water quality model, CE-QUAL-W2, to the Chesapeake Bay–Conowingo Reservoir. Lake and Reservoir Management. Vol. 18(1) p. 10–19. DOI 10.1080/07438140209353925.

DOÑA C., SÁNCHEZ J.M., CASELLES V., DOMÍNGUEZ J.A., CAMACHO A. 2014. Empirical relationships for monitoring water quality of lakes and reservoirs through multispectral images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 7(5) p. 1632–1641. DOI 10.1109/JSTARS.2014.2301295.

HAMILTON D.P., SCHLADOW S.G. 1997. Prediction of water quality in lakes and reservoirs. Part I – Model description. Ecological Modelling. Vol. 96(1–3) p. 91–110. DOI 10.1016/S0304-3800(96)00062-2.

HENRY R. 1993. Thermal regime and stability of Jurumirim reservoir (Paranapanema River, Sao Paulo, Brazil). Internationale Revue der gesamten Hydrobiologie und Hydrographie. Vol. 78(4) p. 501–511. DOI 10.1002/IROH.19930780407.

HUA R., ZHANG Y. 2017. Assessment of water quality improvements using the hydrodynamic simulation approach in regulated cascade reservoirs: A case study of drinking water sources of Shenzhen, China. Water. Vol. 9(11) p. 825–839. DOI 10.3390/w9110825.

KHODABANDEH F., DARMIAN M.D., MOGHADDAM M.A., MONFARED S.A.H. 2021. Reservoir quality management with CE-QUAL-W2/ANN surrogate model and PSO algorithm (case study: Pishin Dam, Iran). Arabian Journal of Geosciences. Vol. 14(5) p. 1–18. DOI 10.1007/s12517-021-06735-x.

LITVINOV A.S., ZAKONNOVA A.V. 2012. Thermal regime in the Rybinsk Reservoir under global warming. Russian Meteorology and Hydrology. Vol. 37(9) p. 640–644. DOI 10.3103/S1068373912090087.

MELO D.S., GONTIJO E. S., FRASCARELI D., SIMONETTI V.C., MACHADO L.S., BARTH J.A., ... FRIESE K. 2019. Self-organizing maps for evaluation of biogeochemical processes and temporal variations in water quality of subtropical reservoirs. Water Resources Research. Vol. 55(12) p. 10268–10281. DOI 10.1029/2019WR025991.

MOHSENI-BANDPEI A., MOTESADDI S., ESLAMIZADEH M., RAFIEE M., NASSERI M., NAMIN M.M., ... RIAHI S.M. 2018. Water quality assessment of the most important dam (Latyan dam) in Tehran, Iran. Environmental Science and Pollution Research. Vol. 25(29) p. 29227–29239. DOI 10.1007/s11356-018-2865-6.

MOLAJOU A., AFSHAR A., KHOSRAVI M., SOLEIMANIAN E., VAHABZADEH M., VARIANI H.A. 2021. A new paradigm of water, food, and energy nexus. Environmental Science and Pollution Research. DOI 10.1007/s11356-021-13034-1.

NOURANI V., ROUZEGARI N., MOLAJOU A., BAGHANAM A.H. 2020. An integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenarios. Journal of Hydrology. Vol. 587, 125018. DOI 10.1016/j.jhydrol.2020.125018.

OSTFELD A., SALOMONS S. 2005. A hybrid genetic – instance based learning algorithm for CE-QUAL-W2 calibration. Journal of Hydrology. Vol. 310(1–4) p. 122–142. DOI 10.1016/j.jhy-drol.2004.12.004.

SCHLADOW S.G., HAMILTON D.P. 1997. Prediction of water quality in lakes and reservoirs: Part II – Model calibration, sensitivity analysis and application. Ecological Modelling. Vol. 96(1–3) p. 111–123. DOI 10.1016/S0304-3800(96)00063-4.

SKOWRON R., PIASECKI A. 2016. Dynamics of the daily course of water temperature in Polish lakes. Journal of Water and Land Development. No. 31 p. 149–156. DOI 10.1515/jwld-2016-0046.

WANG S., QIAN X., HAN B.P., LUO L.C., HAMILTON D.P. 2012. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Research. Vol. 46(8) p. 2591–2604. DOI 10.1016/j.watres.2012.02.014.

WANG X., ZHOU Y., ZHAO Z., WANG L., XU J., YU J. 2019. A novel water quality mechanism modeling and eutrophication risk assessment method of lakes and reservoirs. Nonlinear Dynamics. Vol. 96(2) p. 1037–1053. DOI 10.1007/s11071-019-04837-6.

WU Z., WANG X., CHEN Y., CAI Y., DENG J. 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment. Vol. 612 p. 914–922. DOI 10.1016/j.scitotenv.2017.08.293.

YANG Y., DENG Y., TUO Y., LI J., HE T., CHEN M. 2020. Study of the thermal regime of a reservoir on the Qinghai-Tibetan Plateau, China. PloS ONE. Vol. 15(12), e0243198. DOI 10.1371/journal.pone.0243198.

ZEINIVAND H., DE SMEDT F. 2009. Hydrological modeling of snow accumulation and melting on river basin scale. Water Resources Management. Vol. 23(11) p. 2271–2287. DOI 10.1007/s11269-008-9381-2.

ZHI W., FENG D., TSAI W.P., STERLE G., HARPOLD A., SHEN C., LI L. 2021. From hydrometeorology to river water quality: Can a deep learning model predict dissolved oxygen at the continental scale? Environmental Science & Technology. Vol. 55(4) p. 2357–2368. DOI 10.1021/acs.est.0c06783.
Go to article

Authors and Affiliations

Tzu-Chia Chen
1
ORCID: ORCID
Shu-Yan Yu
1
Chang-Ming Wang
1
Sen Xie
1
Hanif Barazandeh
2

  1. International College, Krirk University, Bangkok, 3 Ram Inthra Rd, Khwaeng Anusawari, Khet Bang Khen, Krung Thep Maha Nakhon 10220, Thailand
  2. Ferdowsi University of Mashhad, Iran
Download PDF Download RIS Download Bibtex

Abstract

The study evaluated the curing properties of natural silica sand moulded with 1% by weight Furotec 132 resin binder catalysed by Furocure CH Fast acid and Furocure CH Slow acid. Physical properties of this sand included an AFS number of 47.35, 4.40 % clay, 0 % magnetic components, 0.13 % moisture, and 64.5 % of the size distribution spread over three consecutive sieves (150 – 600 μm). The sand was washed repeatedly to remove all the clay and oven dried. 2 kg washed sand samples were mulled with pre-determined weights of either catalyst to give 30 %, 50 % and 70 % by weight of 20 g Furotec 132 resin which was added last. Furotec 132 resin + Furocure CH Slow acid catalyst system gives longer bench lives and strip times but the maximum compressive strength in excess of 5000 N/cm2 is attained after more than 8.5 hours curing time irrespective of the weight % of catalyst added relative to the resin. On that basis, exceeding 30 weight % Furocure CH Slow acid catalyst when sand moulding with Furotec 132 resin has neither technical nor economic justification. In comparison, the Furotec 132 resin + Furocure CH Fast acid catalyst system was only capable of producing mould specimens with maximum compressive strength above 5000 N/cm2 at 30 weight % catalyst addition rate. At 50 and 70 weight % catalyst addition rates, the mulled sand rapidly turned dark green then bluish with a significant spike in temperature to about 40 oC, far exceeding the optimum curing temperature of Furotec 132. This high temperature accelerates the curing rate but with a very low degree of resin curing which explains the low compressive strength. In fact the sand grains fail to bond and have a dry, crumbly texture implying dehydration. Thus, not more than 30 weight % Furocure CH Fast acid catalyst should be used in sand moulding.

Go to article

Authors and Affiliations

M.M. Mashingaidze
Download PDF Download RIS Download Bibtex

Abstract

Influence exerted by various concentrations (0.01 to 50 ppm) of some chlorinated hydrocarbons (Aroclor 1254, Aroclor 1242, pp'DDE, pp'DDT and Lindane (ɣ НСН)) upon the photosynthetic assimilation of 14C02 in Antarctic marine diatom assemblage dominated by Corethron criophilum and some species of Nitzschia (Fragilariopsis group) has been investigated. The photosynthesis was fully inhibited by Lindane (ɣ HCH) in all applied concentrations To smaller extent the photosynthetic process was inhibited in turn by Aroclor 1242, pp'DDE and pp'DDT successively. Aroclor 1254 proved to be the least toxic. The possibility of the decrease of the primary production of the Antarctic diatoms caused by the chlorinated hydrocarbons was discussed.

Go to article

Authors and Affiliations

Aleksy Łukowski
Grażyna Bystrzejewska
Ryszard Ligowski
Download PDF Download RIS Download Bibtex

Abstract

The occurrence of a hydraulic connection between piezometers is identified based on similar changes in water levels. Some piezometers react to changing upper or lower water levels, some may also react to atmospheric precipitation. If the reaction to variable upper water levels is significant, then leakage of seepage control devices is identified and the dam is subjected to repair works. The aim of this research paper is to present and analyse the dynamics of variability of water lev-els in open piezometers of the Chańcza dam, located at the 36 km of the Czarna Staszowska River in the town of Korytnica in Świętokrzyskie province (Poland). Before the analysis of the piezometric data was commenced, the Grubbs statistical test was used to identify and reject the outliers. The scope of the research includes the data captured between January 14, 2014 and January 13, 2017. A hypothesis was formulated that the change in the trend occurred after the spring of 2015 when the water level in the reservoir was reduced by approx. 1.5 m. Two trend lines were adapted for the water levels of each pie-zometer using the least squares method – the first one for the period from January 2014 to May 2015, and the second one from June 2015 to January 2017. In this way, two slopes of the linear function were obtained together with an estimation of their errors. These slopes were compared using a statistical parallelism test.

Go to article

Authors and Affiliations

Stanisław K. Lach
Download PDF Download RIS Download Bibtex

Abstract

Lighting sources with a cold cathode are widely used in electronics. The lamps with a cold cathode are used primarily as sources of white light in optical scanners, digital indicators, display panels and signalling devices. In the paper the advantages of carbonaceous materials as emitters of cold electrons and the possibilities of using them to create a cathode in an electron lamp are discussed.

Go to article

Authors and Affiliations

E. Czerwosz
S. Waszuk
M. Suchańska
J. Kęczkowska

This page uses 'cookies'. Learn more