Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of humidity migration in near surface layers of sand mould during processes of penetration and drying of protective coatings are presented in the hereby paper. The process of the humidity exchanging between surroundings and moulding sands as porous materials, is widely described in the introduction. In addition, the humidity flow through porous materials, with dividing this process into stages in dependence of the humidity movement mechanism, is presented. Next the desorption process, it means the humidity removal from porous materials, was described. Elements of the drying process intensity as well as the water transport mechanisms at natural and artificial drying were explained. The innovative research stands for measuring resistance changes of porous media due to humidity migrations was applied in investigations. Aqueous zirconium coatings of two apparent viscosities 10s and 30s were used. Viscosity was determined by means of the Ford cup of a mesh clearance of 4mm. Coatings were deposited on cores made of the moulding sand containing sand matrix, of a mean grain size dL = 0.25 mm, and phenol-formaldehyde resin. Pairs of electrodes were placed in the core at depths: 2, 3, 4, 5, 8, 12 and 16 mm. Resistance measurements were performed in a continuous way. The course of the humidity migration process in the core surface layer after covering it by protective coating was determined during investigations. Investigations were performed in the room where the air temperature was: T = 22˚C but the air humidity was not controlled, as well as in the climatic chamber where the air temperature was: T = 35˚C and humidity: H = 45%. During the research, it was shown that the process of penetration (sorption) of moisture into the moulding sand is a gradual process and that the moisture penetrates at least 16 mm into the sand. In the case of the drying (desorption) process, moisture from the near-surface layers of the moulding sand dries out much faster than moisture that has penetrated deeper into the sand. Keywords: Core, Sand mould, Porous medium, Humidity migration, Protective coatings, Resistance measurement
Go to article

Bibliography

[1] Pigoń, K., Ruziewicz, Z. (2005). Physical chemistry. Phenomenological foundations. Warszawa: PWN, (in Polish) [2] Zarzycki, R. (2005). Heat transfer and mass movement in environmental engineering. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish) [3] Płoński, W., Pogorzelski, J. (1979). Building physics. Warszawa: Arkady. (in Polish) [4] Świrska-Perkowska, J. (2012). Adsorption and movement of moisture in porous building materials under isothermal conditions. Warszawa: Komitet Inżynierii Lądowej i Wodnej PAN. (in Polish) [5] Kubik, J. (2000). Moisture flows in building materials. Opole: Oficyna Wydawnicza Politechniki Opolskiej. (in Polish) [6] Gawin, D. (2000). Modeling of coupled hygrothermal phenomena in building materials and elements. Łódź: Politechnika Łódzka. (in Polish) [7] Rose, D. (1963). Water movement in porous materials. Part 1: isothermal vapour transfer. British Journal of Applied Physics. (14), 256-262. DOI:10.1088/0508-3443/14/5/308. [8] Rose, D. (1963): Water movement in porous materials. part 2: the separation of the components of water movement. British Journal of Applied Physics. (14), 491-496. DOI: 10.1088/0508-3443/14/8/310. [9] Marynowicz, A., Wyrwał, J. (2005). Testing the moisture properties of selected building materials under isothermal conditions. Warszawa: INB ZTUREK. (in Polish) [10] Kiessl, K. (1983) Kapillarer und dampffoermiger Fauchtetransport in mahrschichtigen Bauteilen. Essen: Dissertation. University Essen. [11] Politechnika Gdańska. The process of drying food substances - laboratory exercises. Retrieved January, 2022, from https://mech.pg.edu.pl/documents/4555684/4565480/suszenie.pdf (in Polish). [12] Baranowski, J., Melech, S., Adamski, P. (2002). Temperature and humidity control systems in the processes of drying food products. Zielona Góra: VI Sympozjum Pomiary i Sterowanie w Procesach Przemysłowych. (in Polish) [13] Ważny, J., Karyś, J. (2001). Protection of buildings against biological corrosion. Warszawa: Arkady. (in Polish) [14] Brooker, D., Bakker-Arkema, F., Hall, C. (1992). Drying and Storage of Grains and Oilseeds. New York: Van Nostrand Reinhold. [15] Reeds, J. (1991). Drying. ASM International Handbook Committee. 131-134. [16] Pel, L., Sawdy, A. & Voronina, V. (2010). Physical principles and efficiency of salt extraction by poulticing. Journal of Cultural Heritage. 11(1), 59-67. DOI:10.1016/j.culher. 2009.03.007. [17] Hii, C., Law, C. & Cloke, M. (2008). Modelling of thin layer drying kinetics of cocoa beans during artificial and natural drying. Journal of Engineering Science and Technology. 3(1), 1-10. [18] Zych, J. & Kolczyk, J. (2013). Kinetics of hardening and drying of ceramic moulds with the new generation binder – colloidal silica. Archives of Foundry Engineering. 13(4), 112-116. DOI: 10.2478/afe-2013-0093. [19] Kolczyk J. & Zych J. (2014). The kinetics of hardening and drying of ceramic molds with a new generation binder - colloidal silica. Przegląd Odlewnictwa. 64(3-4), 84-92. (in Polish) [20] Zych, J., Kolczyk, J. & Jamrozowicz, Ł. (2015). The influence of the shape of wax pattern on the kinetics of drying of ceramic moulds. Metalurgija. 54(1), 15-18. ISSN 0543-5846. [21] Jamrozowicz, Ł., Zych, J. & Kolczyk, J. (2015). The drying kinetics of protective coatings used on sand molds. Metalurgija. 54(1), 23-26. ISSN 0543-5846. [22] Jamrozowicz, Ł. & Siatko, A. (2020). The assessment of the permeability of selected protective coatings used for sand moulds and cores. Archives of Foundry Engineering. 20(1), 17-22. DOI: 10.24425/afe.2020.131276. [23] Jamrozowicz, Ł., Kolczyk-Tylka, J. & Siatko, A. (2018) Investigations of the thickness of protective coatings deposited on moulds and cores. Archives of Foundry Engineering. 18(4), 131-136. DOI: 10.24425/afe.2018. 125182. [24] Zych, J. & Snopkiewicz, T. (2010). Drying and hardening of ceramic moulds used in a modern investemnt casting technique – investigations of the process kinetics. Foundry Journal of the Polish Foundrymen's Association. 9-10, 506-512. [25] Zych, J., Snopkiewicz, T. (2018). Method for study the drying process self-hardening molding sand or core compound. Patent PL 228373 B1.
Go to article

Authors and Affiliations

Ł. Jamrozowicz
1
ORCID: ORCID
J. Zych
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Cast Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Cast iron destined for spheroidization is usually characterized by a near-eutectic chemical composition, which is a result of the necessity of maintaining its high graphitizing ability. This graphitizing ability depends mainly on the chemical composition but also on the so-called physical-chemical state. This, in turn, depends on the melting process history and the charge structure. It happens quite often, that at very similar chemical compositions cast irons are characterized by different graphitizing abilities. The hereby work concerns searching for the best method of assessing the graphitizing abilities of near-eutectic cast iron. The assessment of the graphitizing ability was performed for cast iron obtained from the metal charge consisting of 100% of special pig iron and for synthetic cast iron obtained from the charge containing 50% of pig iron + 50% of steel. This assessment was carried out by a few methods: wedge tests, thermal analysis, microstructure tests as well as by the new ultrasonic method. The last method is the most sensitive and accurate. On the basis of the distribution of the wave velocity, determined in the rod which one end was cast on the metal plate, it is possible to determine the graphitizing ability of cast iron. The more uniform structure in the rod, in which directional solidification was forced and which had graphite precipitates on the whole length, the higher graphitizing ability of cast iron. The homogeneity of the structure is determined by the indirect ultrasonic method, by measurements of the wave velocity. This new ultrasonic method of assessing the graphitizing ability of cast iron of a high Sc (degree of eutectiveness) and CE (carbon equivalent) content, can be counted among fast technological methods, allowing to assess the cast iron quality during the melting process.
Go to article

Bibliography

[1] Janerka, K. (2010). Carburizing of iron alloys. Gliwice: Wydawnictwa Politechniki Śląskiej. (in Polish).
[2] Janerka, K. (2019). The rate effectiveness of carbonization to the sort of carburizer. Archives of Foundry Engineering. 7(4), 95-100.
[3] Karsay, S.J. (1992). Ductile Iron I, Production. Canada: QIT –Fer & Titane.
[4] Fraś, E., Podrzucki, Cz. (1981). Modified cast iron. Kraków: Skrypt AGH. (in Polish).
[5] Riposan, I., Chisamera, M., Stan, S., Adam, N. (2004). Influencing Factors on the High Purity - Steel Scrap Optimum Ratio in Ductile Iron Production. Ductile Iron News. 2, 10-19.
[6] Riposan, I., Chisamera, M., Stan, S., Constantin, V., Adam, N. & Barstow, M. (2006). Beneficial remnant effect of high purity pig iron in industrial production of ductile iron. AFS Transactions. 114, 657-666.
[7] Fraś, E. (1978). Przegląd Odlewnictwa. 6,133. (in Polish).
[8] Podrzucki, Cz. (1991). Cast iron - structure - properties – application. Kraków: Wyd. ZG STOP. (in Polish).
[9] Podrzucki, Cz., Falęcki, Z., Wiśniewski, B. (1966). Przegląd Odlewnictwa. 7-8, 248. (in Polish).
[10] ASTM Standards of iron casting, (1957). Tentative methods of testing of cast iron. 76, A 367-55T.
[11] Podrzucki Cz., Kalata Cz. (1976). Metallurgy and iron founding. Katowice: Wyd. Śląsk. (in Polish).
[12] Zych ,J. (2000). The study of the sensitivity of cast iron to the cooling rate using the ultrasonic method. Solidification of Metals and Alloys. 43, 543-552. (in Polish).
[13] Zych, J. (2001). Multi-stage, ultrasonic control of the ductile iron castings production process. Archives of Foundry. 1(1/2), 227-235. (in Polish).
Go to article

Authors and Affiliations

J. Zych
1
ORCID: ORCID
M. Myszka
1
T. Snopkiewicz
1

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Cast Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland

This page uses 'cookies'. Learn more