Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

At present, the cushion thickness of composite foundation under rigid base is mostly selected by the experience of the engineer, which is of great arbitrariness. In order to improve this problem, the optimum design method of cushion thickness is proposed by theoretical research. First, the stress diffusion line in the cushion is assumed to be a quadratic curve, and the critical diffusion thickness of the pile top stress is obtained. Then, by analyzing the relative deformation between soil and pile, pile top penetration into the critical cushion thickness is proposed. Finally, based on the relationship between stress ratio of pile to soil and cushion thickness, the calculation method of optimum cushion thickness is put forward. The application of engineering cases shows that the proposed method has better calculation results, which attests to the correctness of the method. The method can be used for the optimal design of cushion thickness of single-type-pile or multi-type-pile composite foundation.
Go to article

Authors and Affiliations

Yaoting Xiao
1
ORCID: ORCID
Jing Wang
1
ORCID: ORCID

  1. Hubei University of Arts and Science, College of Civil Engineering and Architecture, No. 296, Longzhong Road, Xiangyang, Hubei, China
Download PDF Download RIS Download Bibtex

Abstract

The mechanical properties of soil in soft soil area are poor, and the settlement of the underlying layer in the composite foundation accounts for a large proportion of the total settlement. At present, most of the research focuses on the settlement of the reinforced area, and the research on the settlement of the underlying layer is of great significance for the settlement of soft soil composite foundation. The differences in load transfer modes of soil and pile are analyzed, and based on the Boussinesq solution and Mindlin solution, a calculation method for the stress and settlement of the underlying layer in flexible and rigid pile composite foundation is proposed. The relative displacement of soil and pile in flexible pile composite foundation is small, and the negative friction can be ignored, but the influence of effective pile length should be considered. The relative displacement of soil and pile in rigid pile composite foundation is large, so the negative friction should be considered. Part of soil top stress is transmitted to the pile via negative friction, and then the pile axial force is transmitted back to the soil via positive friction. In addition to effective pile length, the change of stress transfer path caused by negative friction should also be considered in settlement calculation.
Go to article

Authors and Affiliations

Yaoting Xiao
1
ORCID: ORCID
Jing Wang
1
ORCID: ORCID

  1. Hubei University of Arts and Science, College of Civil Engineering and Architecture, No. 296, Longzhong Road, Xiangyang, Hubei, China

This page uses 'cookies'. Learn more