Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper focuses on the static behavior of double-layered tensegrity grids. Due to the specific characteristics, like the self-stress states and infinitesimal mechanisms, tensegrities can be used as deployable structures. For such structures, the possibility of the control of the behavior is very important. The main purpose of the work is to prove that the control of tensegrity structures with mechanisms is possible. The stiffness of such structures is found to depend not only on the geometry and material properties, but also on the initial prestress level and external load. In the case, when mechanisms do not exist, structures are insensitive to the initial prestress. It is possible to control the occurrence of mechanisms by changing the support conditions of the structure. Grids built with modified Simplex modules are considered. Two-stage analysis is performed. Firstly, the presence of the characteristic tensegrity features is examined and then, on that basis, the structures are classified into one of two classes. Next, the influence of the level of initial prestress on the behavior of structures under static load is analyzed. To evaluate this behavior, a geometrically non-linear model is used.
Go to article

Authors and Affiliations

Justyna Tomasik
1
ORCID: ORCID
Paulina Obara
1
ORCID: ORCID

  1. Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to prove that the dynamic behavior of tensegrity grids can be controlled. This possibility is very important, especially for deployable structures. The impact the support conditions of the structure on the existence of the immanent characteristics, such as self-stress states and infinitesimal mechanisms, and consequently on the dynamic control, is analyzed. Grids built with the modified Quartex modules are considered. A geometrically non-linear model is used, implemented in an original program written in the Mathematica environment. The results confirm the feasibility of controlling tensegrity structures characterized by the presence of the infinitesimal mechanisms. In the case that the mechanisms do not exist, structures are insensitive to the change of the initial prestress level. The occurrence of mechanisms can be controlled by changing the support conditions of the structure. The obtained results make tensegrity a very promising structural concept, applicable in many areas when conventional solutions are insufficient.
Go to article

Authors and Affiliations

Paulina Obara
1
ORCID: ORCID
Justyna Tomasik
1
ORCID: ORCID

  1. Kielce University of Technology, al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland

This page uses 'cookies'. Learn more