Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Machining with tool that have cutting edge radius provides components with high fatigue strength, microhardness of a large surface layer and plastic deformation. Finite element simulations of the cutting process give a better knowledge of the chip generation phenomenon, heat generation in the machining area, stress and temperature field results. This study emphasizes the true importance of the mathematical model that underlies the shape of the tool in the pre-processing steps of finite element analysis. The argument is that its achievement and definition depend on the network difficulty. This research purpose is to perform simulations series of orthogonal machining with different radius and depth of cut. In this way, conclusions on the impact of these variations on the whole cutting process were drawn. The finite element application used is Deform 2D, the Lagrange incremental method and the Johnson-Cook material model. The temperature distribution, stress distribution, von Mises stress distribution, effects on specific tool pressure and wear, and fluctuations in the cutting resistance of the tool tip and C45 workpiece were analyzed.
Go to article

Authors and Affiliations

A.B. Pop
1
ORCID: ORCID
A.V. Sandu
2 3
ORCID: ORCID
A. Sachelarie
4
ORCID: ORCID
Mihail Aurel Țîțu
ORCID: ORCID

  1. Technical University of Cluj-Napoca, North University Center of Baia Mare, 62A, Victor Babeș Street, Baia Mare, Romania
  2. Gheorghe Asachi Technical University, Faculty of Materials Science and Engineering, Blvd. D. Mangeron 71, 700050 Iasi, Romania
  3. Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
  4. Gheorghe Asachi Technical University of Iasi, Faculty of Mechanical Engineering, D. Mangeron 41, 70050, Iasi, Romania

This page uses 'cookies'. Learn more